Skip to main content
Log in

On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z (Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida: Nature (London) 2006, vol. 439, pp. 957-60.

    Article  Google Scholar 

  2. Y.J. Huang, Q.D. Hu and J.G. Li: Appl. Phys. Lett. 2012, vol. 101, pp. 222403.

    Article  Google Scholar 

  3. J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore and O. Gutfleisch: Nat. Mater. 2012, vol 11, pp. 620-26.

    Article  Google Scholar 

  4. K. R. Priolkar, P. A. Bhobe, D. N. Lobo, S. W. D’Souza, S. R. Barman, A. Chakrabarti and S. Emura: Phys. Rev. B, 2013, vol. 87, pp. 144412.

    Article  Google Scholar 

  5. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard and B. Ouladdiaf: Phys. Rev. B, 2007, vol.75, pp. 104414.

    Article  Google Scholar 

  6. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa and A. Planes: Nat. Mater. 2005, vol. 4, pp. 450-54.

    Article  Google Scholar 

  7. L. Mañosa, D.G. Alonso, A. Planes, E. Bonnot, M. Barrio, J.L. Tamarit, S. Aksoy and M. Acet: Nat. Mater. 2010, vol. 9, pp. 478-81.

    Article  Google Scholar 

  8. S.Y. Yu, Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang and X.X. Zhang: Appl. Phys. Lett. 2006, vol. 89, pp. 162503.

    Article  Google Scholar 

  9. B. Zhang, X.X. Zhang, S.Y. Yu, J.L. Chen, Z.X. Cao and G.H. Wu: Appl. Phys. Lett. 2007, vol. 91, pp. 012510.

    Article  Google Scholar 

  10. H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov and H.J. Maier: Adv. Funct. Mater. 2009, vol.19, pp. 983-98.

    Article  Google Scholar 

  11. J. Ma and I. Karaman: Science 2010, vol. 327, pp. 1468-69.

    Article  Google Scholar 

  12. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley and V.V. Kokorin: Appl. Phys. Lett. 1996, vol. 69, pp. 1966.

    Article  Google Scholar 

  13. H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov and H.J. Maier: Acta Mater., 2007, vol. 55, pp. 4253-69.

    Article  Google Scholar 

  14. A. Sozinov, A.A. Likhachev, N. Lanska and K. Ullakko: Appl. Phys. Lett. 2002, vol. 80, pp. 1746.

    Article  Google Scholar 

  15. L. Straka and O. Heczko: J. Appl. Phys. 2003, vol. 93, pp. 8636.

    Article  Google Scholar 

  16. Y. Ge, O. Heczko, O. Söderberg and S.P. Hannula: Appl. Phys. Lett. 2006, vol. 89, pp. 082502.

    Article  Google Scholar 

  17. Q. Pan and R.D. James: J. Appl. Phys. 2000, vol. 87, pp. 4702.

    Article  Google Scholar 

  18. J. Enkovaara, A. Ayuela, L. Nordström and R.M. Nieminen: Phys. Rev., 2002, vol. 65, pp. 13422

    Article  Google Scholar 

  19. M.E. Gruner, P. Entel, I. Opahle and M. Richter: J. Mater. Sci.,2008, vol. 43, pp. 3825

    Article  Google Scholar 

  20. S. Kaufmann, U.K. Roßler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz and S. Fähler: Phys. Rev. Lett. 2010, vol. 104, p. 145702

    Article  Google Scholar 

  21. K. Haldar, D.C. Lagoudas and I. Karaman: J. Mech. Phys. Solids, 2014, vol. 69, pp. 33

    Article  Google Scholar 

  22. N. M. Bruno, I. Karaman, J. H. Ross Jr., and Y. I. Chumlyakov: Rev. Sci. Inst., 2015, vol. 86, p. 113902

    Article  Google Scholar 

  23. N. M. Bruno, Y. J. Huang, C. L. Dennis, J. G. Li, R. D. Shull, J. H. Ross Jr and I. Karaman: J. Appl. Phys., 2016, vol. 120, pp. 075101

    Article  Google Scholar 

  24. A.A. Kichkina, M.Yu. Matrosov, L.I. Efron, M.B. Klyukvin and A.V. Golovanov: Metallurgist, 2011, vol. 54, pp. 808-16.

    Article  Google Scholar 

  25. D.T. James, J.M. Frost, J. Wade, J. Nelson and J.-S. Kim: ACS Nano, 2013; 7, pp. 7983-91.

    Article  Google Scholar 

  26. J.F. Blachot, O. Diat, J. Putaux, A. Rollet, L. Rubatat, C. Vallois, M. Müller and G. Gebel: J. Membr. Sci. 2003, vol. 214, pp. 31-42.

    Article  Google Scholar 

  27. M. Fonte and A. Saigal: Scr. Mater., 2010, vol. 63, pp. 320-23.

    Article  Google Scholar 

  28. U. Gaitzsch, M. Potschke, S. Roth, B. Rellinghaus and L. Schultz: Acta Mater. 2009, vol.57, pp. 365-70.

    Article  Google Scholar 

  29. J. Liu, S. Aksoy, N. Scheerbaum, M. Acet and O. Gutfleisch: Appl. Phys. Lett. 2009, vol. 95, pp. 232515.

    Article  Google Scholar 

  30. B. Kiefer, H. E. Karaca, D. C. Lagoudas and I. Karaman: J. Magn. Magn. Mater., 2007, vol. 312, pp. 164.

    Article  Google Scholar 

  31. H. E. Karaca, I. Karaman, B. Basaran, D. C. Lagoudas, Y. I. Chumlyakov and H. J. Maier: Scripta Mater., 2006, vol. 55, pp. 803.

    Article  Google Scholar 

  32. E.C. Stoner and E.P. Wohlfarth: Philos. Trans. R. Soc. Lond. A, 1948, vol. 240, p. 599.

    Article  Google Scholar 

  33. Y.J. Huang, Q.D. Hu, J. Liu, L. Zeng, D.F. Zhang and J.G. Li: Acta Mater. 2013, vol. 61, pp. 5702-12.

    Article  Google Scholar 

  34. Z. N. Zhou, L. Yang, J.G. Wang, T.F. Jin, Y.J. Huang, J. Li, Q.D. Hu, J.G. Li: Prog. Nat. Sci. Mater., 2017, vol. 27, pp. 356–361.

    Article  Google Scholar 

  35. V.V. Khovaylo, T. Kanomata, T. Tanaka, M. Nakashima, Y. Amako, R. Kainuma, R. Y. Umetsu, H. Morito and H. Miki: Phys. Rev. B, 2009, vol. 80, pp. 144409.

    Article  Google Scholar 

  36. V.K. Sharma, M.K. Chattopadhyay, A. Chouhan and S.B. Roy: J. Phys. D: Appl. Phys., 2009, vol. 42, pp. 185005.

    Article  Google Scholar 

  37. P. Entel, M. Siewert, M.E. Gruner, A. Chakrabarti, S.R. Barman, V. V. Sokolovskiyd and V. D. Buchelnikovd: J. Alloys Compd., 2013, vol. 577S, pp. S107-12.

    Article  Google Scholar 

  38. V.D. Buchelnikov, P. Entel, S. V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner and S. K. Nayak: Phys. Rev. B 2008, vol. 78, pp. 184427.

    Article  Google Scholar 

  39. Q.D. Hu, L. Yang, Z.N. Zhou, Y.J. Huang, J. Li, J.G. Li: Metall. Mater. Trans. A, 2017, Vol. 48(6), pp. 2675-2681.

    Article  Google Scholar 

  40. W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida and T. Kanomata: Appl. Phys. Lett., 2008, vol. 92, pp. 021908.

    Article  Google Scholar 

  41. R.Y. Umetsu, W. Ito K. Ito, K. Koyama, A. Fujita, K. Oikawa, T. Kanomata, R. Kainuma and K. Ishida: Scr. Mater., 2009, vol. 60, pp. 25-28.

    Article  Google Scholar 

  42. P. J. Shamberger and F. S. Ohuchi: Phys. Rev. B, 2009, vol. 79, pp. 144407.

    Article  Google Scholar 

  43. P.J. Brown, A.P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K-U Neumann, K. Oikawa, B. Ouladdiaf and K. R. A. Ziebeck: J. Phys.: Condens. Matter., 2006, vol. 18, pp. 2249.

    Article  Google Scholar 

  44. J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari: Acta Mater., 2000, vol. 48, pp. 3027-38.

    Article  Google Scholar 

  45. S. Singh, R. Rawat, S. E. Muthu, S.W. D’Souza, E. Suard, A. Senyshyn, S. Banik, P. Rajput, S. Bhardwaj, A.M. Awasthi, R. Ranjan, S. Arumugam, D.L. Schlagel, T.A. Lograsso, A. Chakrabarti and S.R. Barman: Phys. Rev. Lett., 2012, vol. 109, p. 246601.

  46. J.A. Monroe, I. Karaman, B. Basaran, W. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama and Y.I. Chumlyakov: Acta Materialia, 2012, vol.60, pp. 6883

    Article  Google Scholar 

  47. B. Hernando, J.L. Sánchez Llamazares, V.M. Prida, D. Baldomir, D. Serantes, M. Ilyn and J. González: Appl. Phys. Lett., 2009, vol. 94, pp. 222502.

    Article  Google Scholar 

  48. S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa and A. Planes: Appl. Phys. Lett., 2007, vol. 91, pp. 251915.

    Article  Google Scholar 

  49. Y.J. Huang, Q.D. Hu, N. Bruno, I. Karaman and J.G. Li: Mater. Lett., 2014, vol. 114, pp. 11-14.

    Article  Google Scholar 

  50. A. Giguère, M. Foldeaki, B.R. Gopal, R. Chahine, T.K. Bose, A. Frydman and J.A. Barclay: Phys. Rev. Lett., 1999, vol.83, pp. 2262.

    Article  Google Scholar 

  51. V.K. Sharma, M.K. Chattopadhyay and S.B. Roy: J. Phys. Condens. Matter., 2011, vol. 23, p. 366001.

    Article  Google Scholar 

  52. V.K. Sharma, M.K. Chattopadhyay and S.B. Roy: J. Phys. D Appl. Phys., 2007, vol. 40, p. 1869.

    Article  Google Scholar 

  53. D. Bourgault, J. Tillier, P. Courtois, D. Maillard and X. Chaud: Appl. Phys. Lett., 2010, vol. 96, pp. 132501.

    Article  Google Scholar 

  54. K. Otsuka and C.M. Wayman, Shape memory materials. New York: Cambridge University Press; 1998.

    Google Scholar 

  55. T. Omori, K. Watanabe, X. Xu, R.Y. Umetsu, R. Kainuma and K. Ishida: Scr. Mater., 2011, vol. 64, pp. 669-72.

    Article  Google Scholar 

  56. C. Seguı, V.A. Chernenko, J. Pons,, E. Cesari, V. Khovailo and T. Takagi: Acta Mater. 2005, vol. 53, pp. 111-20.

    Article  Google Scholar 

  57. T. Omori, K. Watanabe, R. Y. Umetsu, R. Kainuma and K. Ishida: Appl. Phys. Lett., 2009, vol. 95, pp. 082508.

    Article  Google Scholar 

  58. J. Kim, F. Inaba, T. Fukuda and T. Kakeshita: Acta Mater., 2006, vol. 54, pp. 493-499.

    Article  Google Scholar 

  59. I. Karaman, H.E. Karaca, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov and H.J. Maier: Scr. Mater., 2006, vol. 55, pp. 403-06.

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the National Key R&D Program of China (No. SQ2017YFGX01026201), Joint Funds of the National Natural Science Foundation of China (No. U1660203), National Natural Science Foundation of China (Grant Nos. 51774201, 51374144 and 51161120362). The authors are grateful to Instrumental Analysis Center of Shanghai Jiao Tong University for technical support and thankful for the helpful discussions from Dr. J.H. Li with University of Leoben and Professor D.H. Wang with Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaodan Hu or Jun Li.

Additional information

Manuscript submitted June 6, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Zhou, Z., Yang, L. et al. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy. Metall Mater Trans A 48, 5480–5491 (2017). https://doi.org/10.1007/s11661-017-4281-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4281-9

Navigation