Skip to main content
Log in

Unraveling the Initial Microstructure Effects on Mechanical Properties and Work-Hardening Capacity of Dual-Phase Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ferritic-martensitic, dual-phase (DP) microstructures with different size, morphology, and distribution of martensite were produced by altering the initial microstructures using heat treatment and thermomechanical processing routes. It was revealed that the strength, ductility, and work-hardening rate of DP steels strongly depend on the volume fraction and the morphology of the martensite phase. In this regard, the fine-grained DP microstructure showed a high work-hardening ability toward an excellent combination of strength and ductility. Such a microstructure can be readily obtained by intercritical annealing of an ultrafine grained (UFG) microstructure, where the latter can be produced by cold-rolling followed by tempering of a martensite starting microstructure. Conclusively, the enhancement of mechanical properties of DP steels through microstructural refinement was found to be more beneficial compared with increasing the volume fraction of martensite. Finally, it was also demonstrated that the work-hardening rate analysis based on the instantaneous (incremental) work-hardening exponents might be an advantageous approach for characterizing DP steels along with the conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391-41.

    Article  Google Scholar 

  2. N. Fonstein: Automotive Steels, Woodhead Publishing, Atlanta, GA, 2017, pp. 169-216.

    Book  Google Scholar 

  3. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013, vol. 84, pp. 937-47.

    Google Scholar 

  4. X.L. Cai, A.J. Garratt-Reed, and W.S. Owen: Metall. Trans. A, 1985, vol. 16, pp. 543-57.

    Article  Google Scholar 

  5. D. Das and P.P. Chattopadhyay: J. Mater. Sci., 2009, vol. 44, pp. 2957-65.

    Article  Google Scholar 

  6. E. Ahmad, T. Manzoor, M.M.A. Ziai, and N. Hussain: J. Mater. Eng. Perf., 2012, vol. 21, pp. 382-87.

    Article  Google Scholar 

  7. A. Kalhor and H. Mirzadeh: Steel Res. Int., 2017, vol. 88, p. 1600385.

    Article  Google Scholar 

  8. H. Seyedrezai, A.K. Pilkey, and J.D. Boyd: Mater. Sci. Eng. A, 2014, vol. 594, pp. 178-88.

    Article  Google Scholar 

  9. L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, and D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386-98.

    Article  Google Scholar 

  10. M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832-40.

    Article  Google Scholar 

  11. M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5313–17.

  12. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: ISIJ Int., 2011, vol. 51, pp. 958-64.

    Article  Google Scholar 

  13. N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128-33.

    Article  Google Scholar 

  14. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2014, vol. 604, pp. 135-41.

    Article  Google Scholar 

  15. A. Karmakar, M. Mandal, A. Mandal, M.D. Basiruddin, S. Mukherjee, and D. Chakrabarti: Metall. Mater. Trans. A, 2016, vol. 47, pp. 268-81.

    Article  Google Scholar 

  16. Y. Mazaheri, A. Kermanpur, and A. Najafizadeh: ISIJ Int., 2015, vol. 55, pp. 218-26.

    Article  Google Scholar 

  17. S.A. Etesami and M.H. Enayati: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3271-6.

    Article  Google Scholar 

  18. H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi: Mater. Sci. Eng. A, 2017, vol. 680, pp. 197-202.

    Article  Google Scholar 

  19. K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2145-59.

    Article  Google Scholar 

  20. J. Zhang, H. Di, Y. Deng, and R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 627, pp. 230-40.

    Article  Google Scholar 

  21. K.T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, and K.K. Um: Scripta Mater., 2004, vol. 51 pp. 909-13.

    Article  Google Scholar 

  22. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito: Scripta Mater., 2002, vol. 46, pp. 305-10.

    Article  Google Scholar 

  23. H.F. Lan, W.J. Liu, and X.H. Liu: ISIJ Int., 2007, vol. 47, pp. 1652-7.

    Article  Google Scholar 

  24. M. Najafi, H. Mirzadeh, and M. Alibeyki: Mater. Sci. Eng. A, 2016, vol. 670, pp. 252-55.

    Article  Google Scholar 

  25. N.K. Balliger and T. Gladman: Metall. Sci., 1981, vol. 15, pp. 95-108.

    Article  Google Scholar 

  26. H. Paruz and D.V. Edmonds: Mater. Sci. Eng. A, 1989, vol. 117, pp. 67-74.

    Article  Google Scholar 

  27. J. Lian, Z. Jiang, and J. Liu: Mater. Sci. Eng. A, 1991, vol. 147, pp. 55-65.

    Article  Google Scholar 

  28. T.T. Huang, R.B. Gou, W.J. Dan, and W.G. Zhang: Mater. Sci. Eng. A, 2016, vol. 672, pp. 88-97.

    Article  Google Scholar 

  29. H.Y. Yu and J.Y. Shen: Mater. Des., 2014, vol. 63, pp. 412-8.

    Article  Google Scholar 

  30. S. Sodjit and V. Uthaisangsuk: Mater. Des., 2012, vol. 41, pp. 370-9.

    Article  Google Scholar 

  31. A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1193-202.

    Article  Google Scholar 

  32. E.V. Nesterova, S. Bouvier, and B. Bacroix: Mater. Charact., 2015, vol. 100, pp. 152-62.

    Article  Google Scholar 

  33. A.-P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: Acta Mater., 2014, vol. 73, pp. 298-311.

    Article  Google Scholar 

  34. J.C. Zhang, H.S. Di, Y.G. Deng, S.C. Li, and R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 645, pp. 232-40.

    Article  Google Scholar 

  35. C. Li, Z. Li, Y. Cen, B. Ma, and G. Huo: Mater. Sci. Eng. A, 2015, vol. 627, pp. 281-9.

    Article  Google Scholar 

  36. P.J. Jacques, J. Ladriere, and F. Delannay: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2759-68.

    Article  Google Scholar 

  37. B. Pawłowski: J. Achieve. Mater. Manuf. Eng., 2011, vol. 49, pp. 331-7.

    Google Scholar 

  38. S. Saadatkia, H. Mirzadeh, and J.M. Cabrera: Mater. Sci. Eng. A, 2015, vol. 636, pp. 196-202.

    Article  Google Scholar 

  39. S. Deldar, H. Mirzadeh, and M.H. Parsa: Eng. Fail. Anal., 2016, vol. 68, pp. 132-7.

    Article  Google Scholar 

  40. S.W. Thompson and P.R. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 77-86.

    Article  Google Scholar 

  41. G. Krauss: Steels Processing, Structure, and Performance, 2nd ed., ASM International, Materials Park, OH, 2015.

    Google Scholar 

  42. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738-46.

    Article  Google Scholar 

  43. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658-70.

    Article  Google Scholar 

  44. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, Oxford, U.K., 2007.

    Google Scholar 

  45. M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38, pp. 328-39.

    Article  Google Scholar 

  46. J. Kang, Y. Ososkov, J.D. Embury, and D.S. Wilkinson: Scripta Mater., 2007, vol. 56, pp. 999-1002.

    Article  Google Scholar 

  47. D.A. Korzekwa, R.D. Lawson, D.K. Matlock, and G. Krauss: Scripta Metall., 1980, vol. 14, pp. 1023-8.

    Article  Google Scholar 

  48. J.Y. Kang, S.J. Park, D.W. Suh, and H.N. Han: Mater. Charact., 2013, vol. 84, pp. 205-15.

    Article  Google Scholar 

  49. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, NY, 1988.

    Google Scholar 

  50. J. Rösler, H. Harders, and M. Bäker: Mechanical Behavior of Engineering Materials, Springer, Berlin, 2007.

    Google Scholar 

  51. R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civil Mech. Eng., 2008, vol. 8, pp. 103-17.

    Article  Google Scholar 

  52. C.A.N. Lanzillotto and F.B. Pickering: Metal Sci., 1982, vol. 16, pp. 371-82.

    Article  Google Scholar 

  53. M.J. Zehetbauer and Y.T. Zhu: Bulk Nanostructured Materials, Wiley, New York, NY, 2009.

    Book  Google Scholar 

  54. R. Song, D. Ponge, and D. Raabe: Scripta Mater., 2005, vol. 52, pp. 1075-80.

    Article  Google Scholar 

  55. A. Ghatei Kalashami, A. Kermanpur, E. Ghassemali, A. Najafizadeh, and Y. Mazaheri: J. Alloy Compd., 2017, vol. 694, pp. 1026-35.

    Article  Google Scholar 

  56. M. Rezayat, M. Gharechomaghlu, H. Mirzadeh, and M.H. Parsa: Appl. Math. Modell., 2016, vol. 40, pp. 8826-31.

    Article  Google Scholar 

  57. M.S. Rashid: Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 245-66.

    Article  Google Scholar 

  58. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe: Acta Mater., 2014, vol. 81, pp. 386-400.

    Article  Google Scholar 

  59. C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe: Int. J. Plastic., 2014, vol. 63, pp. 198-210.

    Article  Google Scholar 

  60. A. Ramazani, Z. Ebrahimi, and U. Prahl: Comput. Mater. Sci., 2014, vol. 87, pp. 241-7.

    Article  Google Scholar 

  61. A.R. Marder: Metall. Trans. A, 1982, vol. 13, pp. 85-92.

    Article  Google Scholar 

  62. R.G. Davies: Metall. Trans. A, 1978, vol. 9, pp. 671-9.

    Article  Google Scholar 

  63. T.S. Byun and I.S. Kim: J. Mater. Sci., 1993, vol. 28, pp. 2923-32.

    Article  Google Scholar 

  64. W. Bleck, S. Papaefthymiou, and A. Frehn: Steel Res. Int., 2004, vol. 75, pp. 704-10.

    Article  Google Scholar 

  65. S.K. Paul: Mater. Des., 2013, vol. 50, pp. 782-9.

    Article  Google Scholar 

  66. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1-6.

    Article  Google Scholar 

  67. Y. Tomita: J. Mater. Sci., 1990, vol. 25, pp. 5179-84.

    Article  Google Scholar 

  68. L.O. Wolf, F. Nürnberger, D. Rodman, and H.J. Maier: Steel Res. Int., 2017, vol. 88, pp. 271–280.

    Google Scholar 

  69. T. Nanda, V. Singh, V. Singh, A. Chakraborty, and S. Sharma: J. Mater. Des. Appl., DOI:10.1177/1464420716664198.

  70. V.L. de la Concepción, H.N. Lorusso, and H.G. Svoboda: Proc. Mater. Sci., 2015, vol. 8, pp. 1047-56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Manuscript submitted February 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzadeh, H., Alibeyki, M. & Najafi, M. Unraveling the Initial Microstructure Effects on Mechanical Properties and Work-Hardening Capacity of Dual-Phase Steel. Metall Mater Trans A 48, 4565–4573 (2017). https://doi.org/10.1007/s11661-017-4246-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4246-z

Navigation