Skip to main content

Advertisement

Log in

The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1–x Y x N Multilayer Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

As machine tool coating specifications become increasingly stringent, the fabrication of protective titanium aluminum nitride (Ti-Al-N) films by physical vapor deposition (PVD) is progressively more demanding. Nanostructural modification through the incorporation of metal dopants can enhance coating mechanical properties. However, dopant selection and their near-atomic-scale role in performance optimization is limited. Here, yttrium was alloyed in multilayered Ti-Al-N films to tune microstructures, microchemistries, and properties, including mechanical characteristics, adhesion, wear resistance, and resilience to oxidation. By regulating processing parameters, the multilayer period (Λ) and Y content could be adjusted, which, in turn, permitted tailoring of grain nucleation and secondary phase formation. With the composition fixed at x = 0.024 in (Ti0.6Al0.4)1–x Y x N and Λ increased from 5.5 to 24 nm, the microstructure transformed from acicular grains with 〈111〉 preferred orientation to equiaxed grains with 〈200〉 texture, while the hardness (40.8 ± 2.8 GPa to 29.7 ± 4.9 GPa) and Young’s modulus (490 ± 47 GPa to 424 ± 50 GPa) concomitantly deteriorated. Alternately, when Λ = 5.5 nm and x in (Ti0.6Al0.4)1–x Y x N was raised from 0 to 0.024, the hardness was enhanced (28.7 ± 7.3 GPa to 40.8 ± 2.8 GPa) while adhesion and wear resistance were not compromised. The Ti-Al-N adopted a rock-salt type structure with Y displacing either Ti or Al and stabilizing a secondary wurtzite phase. Moreover, Y effectively retarded coating oxidation at 1073 K (800 °C) in air by inhibiting grain boundary oxygen diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson: Surf. Coating Technol., 2005, vol. 191, pp. 384–92.

    Article  Google Scholar 

  2. H. Ichimura and A. Kawana: J. Mater. Res., 1993, vol. 8, pp. 1093–1100.

    Article  Google Scholar 

  3. W. Kalss, A. Reiter, V. Derflinger, C. Gey, and J.L. Endrino: Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 399–404.

    Article  Google Scholar 

  4. Birol Y (2011) Mater Sci Eng A 528: 8402–09

    Article  Google Scholar 

  5. Y.H. Zhao, L. Hu, G.Q. Lin, J.Q. Xiao, C. Dong, and B.H. Yu: Int. J. Refract. Met. Hard Mater., 2012, vol. 32, pp. 27–32.

    Article  Google Scholar 

  6. N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, and J.T.M. De Hosson: Thin Solid Films, 2003, vol. 429, pp. 179–89.

    Article  Google Scholar 

  7. J.M. Cairney, S.G. Harris, P.R. Munroe, and E.D. Doyle: Surf. Coat. Technol., 2004, vol. 183, pp. 239–46.

    Article  Google Scholar 

  8. M.K. Samani, X.Z. Ding, N. Khosravian, B. Amin-Ahmadi, Yang Yi, G. Chen, E.C. Neyts, A. Bogaerts, and B.K. Tay: Thin Solid Films, 2015, vol. 578, pp. 133–38.

    Article  Google Scholar 

  9. M. Arab Pour Yazdi, F. Lomello, J. Wang, F. Sanchette, Z. Dong, T. White, Y. Wouters, F. Schuster, and A. Billard: Vacuum, 2014, vol. 109, pp. 43–51.

    Article  Google Scholar 

  10. M. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel, and H. van den Berg: Surf. Coat. Technol., 2010, vol. 205, pp. 1273–78.

    Article  Google Scholar 

  11. G.S. Fox-Rabinovich, A.I. Kovalev, M.H. Aguirre, B.D. Beake, K. Yamamoto, S.C. Veldhuis, J.L. Endrino, D.L. Wainstein, and A.Y. Rashkovskiy: Surf. Coat. Technol., 2009, vol. 204, pp. 489–96.

    Article  Google Scholar 

  12. Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasy, J.J. Forsyth, F. Clegg, A.P. Ehiasarian, P.E. Hovespian, and W.D. Münz: Surf. Coat. Technol., 2004, vols. 177–178, pp. 198–203.

    Article  Google Scholar 

  13. Martin Moser, Daniel Kiener, Christina Scheu, and Paul H. Mayrhofer: Materials, 2010, vol. 3, p. 1573.

    Article  Google Scholar 

  14. R. Rachbauer, A. Blutmager, D. Holec, and P.H. Mayrhofer: Surf. Coat. Technol., 2012, vol. 206, pp. 2667–72.

    Article  Google Scholar 

  15. Lihui Zhu, Yumeng Zhang, Wangyang Ni, and Yixiong Liu: Surf. Coat. Technol., 2013, vol. 214, pp. 53–58.

    Article  Google Scholar 

  16. H. Riedl, D. Holec, R. Rachbauer, P. Polcik, R. Hollerweger, J. Paulitsch, and Paul H. Mayrhofer: Surf. Coat. Technol., 2013, vol. 235, pp. 174–80.

    Article  Google Scholar 

  17. Richard Rachbauer, David Holec, Martina Lattemann, Lars Hultman, and Paul H. Mayrhofer: Int. J. Mater. Res., 2011, vol. 102, pp. 735–42.

    Article  Google Scholar 

  18. M. Moser and P.H. Mayrhofer, Scripta Mater. 2007, vol. 57, pp. 357-60.

    Article  Google Scholar 

  19. L. Székely, G. Sáfrán, V. Kis, Z.E. Horváth, P.H. Mayrhofer, M. Moser, G. Radnóczi, F. Misják, and P.B. Barna: Surf. Coat. Technol., 2014, vol. 257, pp. 3–14.

    Article  Google Scholar 

  20. C. Ducros, C. Cayron, and F. Sanchette: Surf. Coat. Technol., 2006, vol. 201, pp. 136–42.

    Article  Google Scholar 

  21. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    Article  Google Scholar 

  22. H. Bückle: Metall. Rev., 1959, vol. 4, pp. 49–100.

    Article  Google Scholar 

  23. F. Toscan, Laurent Antoni, Yves Wouters, M. Dupeux, and Alain Galerie: Mater. Sci. Forum, 2004, vol. 461, pp. 705–12.

    Article  Google Scholar 

  24. G.B. Harris: London Edinb. Dubl. Phil. Mag., 1952, vol. 43, pp. 113–23.

    Article  Google Scholar 

  25. Joshua Pelleg, L.Z. Zevin, S. Lungo, and N. Croitoru: Thin Solid Films, 1991, vol. 197, pp. 117–28.

    Article  Google Scholar 

  26. U.C. Oh and Jung Ho Je: J. Appl. Phys., 1993, vol. 74, pp. 1692–96.

    Article  Google Scholar 

  27. J.A. Venables: Philos. Mag., 1962, vol. 7, pp. 35–44.

    Article  Google Scholar 

  28. Charles P. Kempter, N.H. Krikorian, and Joseph C. McGuire: J. Phys. Chem., 1957, vol. 61, pp. 1237–38.

    Article  Google Scholar 

  29. Heinz Schulz and K.H. Thiemann: Solid State Commun., 1977, vol. 23, pp. 815–19.

    Article  Google Scholar 

  30. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer: Surf. Coat. Technol., 2005, vol. 200, pp. 2358–65.

    Article  Google Scholar 

  31. Ayako Kimura, Hiroyuki Hasegawa, Kunihiro Yamada, and Tetsuya Suzuki: Surf. Coat. Technol., 1999, vols. 120–121, pp. 438–41.

    Article  Google Scholar 

  32. P.H. Mayrhofer, D. Music, and J.M. Schneider: Appl. Phys. Lett., 2006, vol. 88, p. 071922.

    Article  Google Scholar 

  33. H.W. Hugosson, H. Högberg, M. Algren, M. Rodmar, and T.I. Selinder: J. Appl. Phys., 2003, vol. 93, pp. 4505–11.

    Article  Google Scholar 

  34. G. Gerald Stoney: Proc. R. Soc. London, Ser. A, 1909, vol. 82, pp. 172–75.

    Article  Google Scholar 

  35. L.A. Donohue, D.B. Lewis, W.D. Münz, M.M. Stack, S.B. Lyon, H.W. Wang, and D. Rafaja: Vacuum, 1999, vol. 55, pp. 109–14.

    Article  Google Scholar 

  36. Florian Rovere and Paul H. Mayrhofer: J. Vac. Sci. Technol., A, 2007, vol. 25, pp. 1336–40.

    Article  Google Scholar 

  37. Z.T. Wu, Z.B. Qi, F.P. Zhu, B. Liu, and Z.C. Wang: Phys. Procedia, 2013, vol. 50, pp. 150–55.

    Article  Google Scholar 

  38. C. Mitterer, P.H. Mayrhofer, and J. Musil: Vacuum, 2003, vol. 71, pp. 279–84.

    Article  Google Scholar 

  39. F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, and A. Billard: Surf. Coat. Technol., 2013, vol. 224, pp. 77–81.

    Article  Google Scholar 

  40. H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, and G.P. Yu: Mater. Sci. Eng., A, 2009, vol. 500, pp. 104–08.

    Article  Google Scholar 

  41. D.C. Agrawal and R. Raj: Acta Metall., 1989, vol. 37, pp. 1265–70.

    Article  Google Scholar 

  42. A. Leyland and A. Matthews: Wear, 2000, vol. 246, pp. 1–11.

    Article  Google Scholar 

  43. Vitaliy Belous, Volodymyr Vasyliev, Alexandr Luchaninov, Volodymyr Marinin, Elena Reshetnyak, Volodymyr Strel’nitskij, Sergiy Goltvyanytsya, and Volodymyr Goltvyanytsya: Surf. Coat. Technol., 2013, vol. 223, pp. 68–74.

    Article  Google Scholar 

  44. M. Pfeiler, K. Kutschej, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein: Surf. Coat. Technol., 2007, vol. 202, pp. 1050–54.

    Article  Google Scholar 

  45. C. Mendibide, P. Steyer, J. Fontaine, and P. Goudeau: Surf. Coat. Technol., 2006, vol. 201, pp. 4119–24.

    Article  Google Scholar 

  46. H. Ju and J. Xu: Surf. Coat. Technol., 2015, vol. 283, pp. 311–17.

    Article  Google Scholar 

  47. B.A. Pint: Oxid. Met., 1996, vol. 45, pp. 1–37.

    Article  Google Scholar 

  48. Igor Levin and David Brandon: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1995–2012.

    Article  Google Scholar 

  49. P. Burtin, J.P. Brunelle, M. Pijolat, and M. Soustelle: Appl. Catal., 1987, vol. 34, pp. 239–54.

    Article  Google Scholar 

  50. Jerzy Jedliński: Oxid. Metal, 1993, vol. 39, pp. 55–60.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ERI @ NTU and the CEA Cross-Cutting Program on Advanced Materials. One of the authors (JW) was financially supported by an IGS/ERI @ NTU scholarship and the Ministry of Education Academic Research Fund (AcRF) Tier 1 RG 76/12 (M4011088.070). Microstructural characterization was performed at the Facility for Analysis, Characterization, Testing and Simulation (FACTS) in NTU and the Ernst Ruska–Centre (ER-C) for Microscopy and Spectroscopy with Electrons in Forschungszentrum Jülich. The fabrication and testing work was supported by Pays de Montbéliard Agglomération.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiLi Dong.

Additional information

Manuscript submitted October 6, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

HRTEM with indexed FFT of the 2.4 at% Y coating with Λ = 24nm shows the existence of wurtzite phase (TIFF 4399 kb)

Supplementary material 2

Al, Ti and Y line profiles by EDS for 2.4 at% Y coatings with average Λ of (a) 5.5 nm, (b) 8 nm, (c) 13 nm and (d) 24 nm (TIFF 3391 kb)

Supplementary material 3

SEM and EDX element profiles along thickness direction of the 1.2 at% Y coating cross-section (TIFF 2999 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yazdi, M.A.P., Lomello, F. et al. The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1–x Y x N Multilayer Coatings. Metall Mater Trans A 48, 4097–4110 (2017). https://doi.org/10.1007/s11661-017-4187-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4187-6

Navigation