Skip to main content

Advertisement

Log in

Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Robert N Gunn (1977), D1uplex stainless steels: microstructure, properties and applications. Woodhead Publishing, Cambridge.

    Google Scholar 

  2. Jeom Yong Choi, Jung Hoon Ji, Si Woo Hwang and Kyung-Tae Park, Materials Science and Engineering: A 2011, vol. 528, pp. 6012-9.

    Article  Google Scholar 

  3. Jeom Yong Choi, Jung Hoon Ji, Si Woo Hwang and Kyung-Tae Park, Materials Science and Engineering: A 2012, vol. 535, pp. 32-9.

    Article  Google Scholar 

  4. Valentin Gavriljuk and Hans Berns (2013) High nitrogen steels: structure, properties, manufacture, applications. Springer Science & Business Media, New York

    Google Scholar 

  5. Hans Berns, Valentin Gavriljuk and Sascha Riedner: High interstitial stainless austenitic steels. (Springer Science & Business Media, 2012).

    Google Scholar 

  6. D Raabe, Materials Science and Engineering: A 1995, vol. 197, pp. 31-37.

    Article  Google Scholar 

  7. Pooriya Dastranjy Nezhadfar, Abbas Zarei-Hanzaki, Seok Su Sohn and Hamid Reza Abedi, Materials Science and Engineering: A 2016, vol. 665, pp. 10-6.

    Article  Google Scholar 

  8. Alireza Mohamadizadeh, Abbas Zarei-Hanzaki, Saara Mehtonen, David Porter and Mohammad Moallemi, Metallurgical and Materials Transactions A 2016, vol. 47A, pp. 436-49.

    Article  Google Scholar 

  9. DT Pierce, JA Jiménez, J Bentley, D Raabe and JE Wittig, Acta Materialia 2015, vol. 100, pp. 178-90.

    Article  Google Scholar 

  10. M Moallemi, A Kermanpur, A Najafizadeh, A Rezaee, H Samaei Baghbadorani and P Dastranjy Nezhadfar, Materials Science and Engineering: A 2016, vol. 653, pp. 147-52.

    Article  Google Scholar 

  11. F Lecroisey and A Pineau, Metallurgical Transactions 1972, vol. 3, pp. 391-400.

    Article  Google Scholar 

  12. RE Schramm and RP Reed, Metallurgical Transactions A 1975, vol. 6, pp. 1345-51.

    Article  Google Scholar 

  13. C. Herrera, D. Ponge and D. Raabe, Acta Materialia 2011, vol. 59, pp. 4653-64.

    Article  Google Scholar 

  14. Jeom Yong Choi, Jung Hoon Ji, Si Woo Hwang and Kyung-Tae Park, Materials Science and Engineering: A 2012, vol. 534, pp. 673-80.

    Article  Google Scholar 

  15. Jeom Yong Choi, Si Woo Hwang and Kyung-Tae Park, Metallurgical and Materials Transactions A 2012, vol. 44, pp. 597-601.

    Article  Google Scholar 

  16. S. Fréchard, F. Martin, C. Clément and J. Cousty, Materials Science and Engineering: A 2006, vol. 418, pp. 312-19.

    Article  Google Scholar 

  17. Ihsan-ul-Haq Toor, Park Jung Hyun and Hyuk Sang Kwon, Corrosion Science 2008, vol. 50, pp. 404-10.

    Article  Google Scholar 

  18. P. Behjati, A. Kermanpur and A. Najafizadeh, Materials Science and Engineering: A 2013, vol. 588, pp. 43-48.

    Article  Google Scholar 

  19. Tae-Ho Lee, Heon-Young Ha, Byoungchul Hwang, Sung-Joon Kim and Eunjoo Shin, Metallurgical and Materials Transactions A 2012, vol. 43, pp. 4455-9.

    Article  Google Scholar 

  20. Tae-Ho Lee, Eunjoo Shin, Chang-Seok Oh, Heon-Young Ha and Sung-Joon Kim, Acta Materialia 2010, vol. 58, pp. 3173-86.

    Article  Google Scholar 

  21. Qingxuan Ran, Yulai Xu, Jun Li, Jianquan Wan, Xueshan Xiao, Haifeng Yu and Laizhu Jiang, Materials & Design 2014, vol. 56, pp. 959-65.

    Article  Google Scholar 

  22. S Curtze, V-T Kuokkala, A Oikari, J Talonen and H Hänninen, Acta Materialia 2011, vol. 59, pp. 1068-76.

    Article  Google Scholar 

  23. DG Brandon, Acta metallurgica 1966, vol. 14, pp. 1479-84.

    Article  Google Scholar 

  24. Georg Frommeyer, Udo Brüx and Peter Neumann, ISIJ international 2003, vol. 43, pp. 438-46.

    Article  Google Scholar 

  25. M Pozuelo, JE Wittig, José Antonio Jiménez and G Frommeyer, Metallurgical and Materials Transactions A 2009, vol. 40, pp. 1826-34.

    Article  Google Scholar 

  26. GB Olson and Morris Cohen, Metallurgical transactions A 1975, vol. 6, pp. 791-5.

    Article  Google Scholar 

  27. GB Olson and Morris Cohen, Journal of the Less Common Metals 1972, vol. 28, pp. 107-18.

    Article  Google Scholar 

  28. Z. X. Wu, Y. W. Zhang and D. J. Srolovitz, Acta Materialia 2009, vol. 57, pp. 4508-18.

    Article  Google Scholar 

  29. Y‐H Zhao, John F Bingert, X‐Z Liao, B‐Z Cui, Ke Han, Alla V Sergueeva, Amiya K Mukherjee, Ruslan Z Valiev, Terence G Langdon and Yuntian T Zhu, Advanced Materials 2006, vol. 18, pp. 2949-53.

    Article  Google Scholar 

  30. F. K. Yan, N. R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe and K. Lu, Acta Materialia 2014, vol. 81, pp. 487-00.

    Article  Google Scholar 

  31. H. T. Wang, N. R. Tao and K. Lu, Acta Materialia 2012, vol. 60, pp. 4027-40.

    Article  Google Scholar 

  32. Mohamed Sennour, Sylvie Lartigue-Korinek, Yannick Champion and MJ Hÿtch, Philosophical Magazine 2007, vol. 87, pp. 1465-86.

    Article  Google Scholar 

  33. X Guo, QD Ouyang, GJ Weng and LL Zhu, Materials Science and Engineering: A 2016, vol. 657, pp. 234-43.

    Article  Google Scholar 

  34. M Dao, L Lu, RJ Asaro, J Th M De Hosson and E Ma, Acta Materialia 2007, vol. 55, pp. 4041-65.

    Article  Google Scholar 

  35. Anja Weidner and Horst Biermann, Jom 2015, vol. 67, pp. 1729-47.

    Article  Google Scholar 

  36. L Remy and A Pineau, Materials science and engineering 1977, vol. 28, pp. 99-107.

    Article  Google Scholar 

  37. B Mahato, SK Shee, T Sahu, S Ghosh Chowdhury, P Sahu, DA Porter and LP Karjalainen, Acta Materialia 2015, vol. 86, pp. 69-79.

    Article  Google Scholar 

  38. VG Gavriljuk, BD Shanina and H Berns, Acta materialia 2000, vol. 48, pp. 3879-93.

    Article  Google Scholar 

  39. V Gerold and HP Karnthaler, Acta Metallurgica 1989, vol. 37, pp. 2177-83.

    Article  Google Scholar 

  40. L Kaufman: Trans. Met. Soc., AIME 1959, vol. 215. pp. 218–27.

    Google Scholar 

  41. Kin Ho Lo, Chan Hung Shek and JKL Lai, Materials Science and Engineering: R: Reports 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  42. Jörg Keichel, Jacques Foct and Günter Gottstein, ISIJ international 2003, vol. 43, pp. 1781-87.

    Article  Google Scholar 

  43. Anthony Rollett FJ, Humphreys, Gregory S Rohrer and M Hatherly (2004) Recrystallization and related annealing phenomena. Elsevier, Boston

    Google Scholar 

  44. L. Bracke, K. Verbeken, L. Kestens and J. Penning, Acta Materialia 2009, vol. 57, pp. 1512-24.

    Article  Google Scholar 

  45. Seung-Hyun Hong and Dong Nyung Lee, Materials Science and Engineering: A 2003, vol. 351, pp. 133-47.

    Article  Google Scholar 

  46. W Mao, Journal of materials engineering and performance 1999, vol. 8, pp. 556-60.

    Article  Google Scholar 

  47. K. Lücke: ICOTOM, Brakman et al. ed. Noordwijkerhout, 1984, p. 195

  48. P.A. Beck and H. Hu: J. Metals (NY) 1952, vol 4.

  49. Diana Pérez Escobar, Sara Silva Ferreira de Dafé and Dagoberto Brandão Santos, Journal of Materials Research and Technology 2015, vol. 4, pp. 162-70.

    Article  Google Scholar 

  50. Nathalie Gey, Bertrand Petit and Michel Humbert, Metallurgical and Materials Transactions A 2005, vol. 36, pp. 3291-99.

    Article  Google Scholar 

  51. BC De Cooman, Jinkyung Kim and Seil Lee, Scripta Materialia 2012, vol. 66, pp. 986-91.

    Article  Google Scholar 

  52. Jörg Keichel, Jacques Foct and Günter Gottstein, ISIJ international 2003, vol. 43, pp. 1788-94.

    Article  Google Scholar 

  53. RE Smallman and D Green, Acta Metallurgica 1964, vol. 12, pp. 145-54.

    Article  Google Scholar 

  54. E El-Danaf, SR Kalidindi, RD Doherty and C Necker, Acta Materialia 2000, vol. 48, pp. 2665-73.

    Article  Google Scholar 

  55. S. Vercammen, B. Blanpain, B. C. De Cooman and P. Wollants, Acta Materialia 2004, vol. 52, pp. 2005-12

    Article  Google Scholar 

  56. B Ravi Kumar, B Mahato, NR Bandyopadhyay and Dipak Kumar Bhattacharya, Materials Science and Engineering: A 2005, vol. 394, pp. 296-301.

    Article  Google Scholar 

  57. D Raabe, Acta Materialia 1997, vol. 45, pp. 1137-51.

    Article  Google Scholar 

  58. D Goodchild, WT Roberts and DV Wilson, Acta Metallurgica 1970, vol. 18, pp. 1137-45.

    Article  Google Scholar 

  59. M. Milititsky, N. De Wispelaere, R. Petrov, J. E. Ramos, A. Reguly and H. Hänninen, Materials Science and Engineering: A 2008, vol. 498, pp. 289-95.

    Article  Google Scholar 

  60. Torben Leffers, Scripta Metallurgica 1968, vol. 2, pp. 447-52.

    Article  Google Scholar 

  61. J.-J. Jonas (2009), Microstructure and Texture in Steels. Springer, London, pp. 3–17.

    Book  Google Scholar 

  62. J. Łuksza, M. Rumiński, W. Ratuszek and M. Blicharski, Journal of Materials Processing Technology 2006, vol. 177, pp. 555-60.

    Article  Google Scholar 

  63. B. Ravi Kumar, A. K. Singh, Samar Das and D. K. Bhattacharya. Materials Science and Engineering: A 2004, vol. 364, pp. 132-9.

    Article  Google Scholar 

  64. Hamilton Ferreira Gomes de Abreu, Sheyla Santana de Carvalho, Pedro de Lima Neto, Ricardo Pires dos Santos, Válder Nogueira Freire, Paulo Maria de Oliveira Silva and Sérgio Souto Maior Tavares, Materials Research 2007, vol. 10, pp. 359-66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Zarei-Hanzaki.

Additional information

Manuscript submitted July 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moallemi, M., Zarei-Hanzaki, A., Eskandari, M. et al. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability. Metall Mater Trans A 48, 3675–3691 (2017). https://doi.org/10.1007/s11661-017-4122-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4122-x

Navigation