Skip to main content
Log in

Coarsening of Inter- and Intra-granular Proeutectoid Cementite in an Initially Pearlitic 2C-4Cr Ultrahigh Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We have examined spheroidization and coarsening of cementite in an initially pearlitic 2C-4Cr ultrahigh carbon steel containing a cementite network. Coarsening kinetics of spheroidized cementite and growth of denuded zones adjacent to the cementite network were investigated by analyzing particle sizes from digital micrographs of water-quenched steel etched with Nital. Denuded zones grew at a rate proportional to t 1/4t 1/5. Spheroidization of pearlite was completed within 90 minutes at 1073 K and 1173 K (800 °C and 900 °C), and within 5 minutes at 1243 K (970 °C). Bimodal particle size distributions were identified in most of the samples and were more pronounced at higher temperatures and hold times. Peaks in the distributions were attributed to the coarsening of intragranular and grain boundary particles at different rates. A third, non-coarsening peak of particles was present at 1073 K (800 °C) only and was attributed to particles existing prior to the heat treatment. Particle sizes were plotted vs time to investigate possible coarsening mechanisms. The coarsening exponent for the growth of grain boundary carbides was closest to 4, indicating grain boundary diffusion control. The coarsening exponent was closest to 5 for intragranular carbides, indicating suppression of volumetric diffusion (possibly due to reduced effective diffusivity because of Cr alloying) and control by dislocation diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.R. Speer and W.L. Forster: US Pat. 1,346,343, 1913.

  2. D.R. Lesuer, C.K. Syn, and O.D. Sherby: Ultrahigh Carbon Steel for Automotive Applications, SAE Technical Paper 960314, 1996.

  3. 3. D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth, and O.D. Sherby: JOM, 1993, vol. 45, pp. 40–46.

    Article  Google Scholar 

  4. 4. M.D. Hecht, B.A. Webler, and Y.N. Picard: Mater. Charact., 2016, vol. 117, pp. 134–43.

    Article  Google Scholar 

  5. 5. M.A. Hamidzadeh, M. Meratian, and A. Saatchi: Mater. Sci. Eng. A, 2013, vol. 571, pp. 193–98.

    Article  Google Scholar 

  6. 6. K.P. Liu, X.L. Dun, J.P. Lai, and H.S. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8263–68.

    Article  Google Scholar 

  7. 7. M.A. Hamidzadeh, M. Meratian, and M. Mohammadi Zahrani: Mater. Sci. Eng. A, 2012, vol. 556, pp. 758–66.

    Article  Google Scholar 

  8. 8. A. Fernández-Vicente, M. Carsí, F. Penalba, E. Taleff, and O.A. Ruano: Mater. Sci. Eng. A, 2002, vol. 335, pp. 175–85.

    Article  Google Scholar 

  9. 9. S.P. Rawal and J. Gurland: Metall. Trans. A, 1977, vol. 8, pp. 691–98.

    Article  Google Scholar 

  10. 10. C.K. Syn, D.R. Lesuer, and O.D. Sherby: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1481–93.

    Article  Google Scholar 

  11. 11. J. Gurland: Acta Metall., 1972, vol. 20, pp. 735–41.

    Article  Google Scholar 

  12. 12. Gene E. Lee, ed.: Rolls for the Metalworking Industries, Iron and Steel Society, Warrendale, PA, 2002.

    Google Scholar 

  13. 13. J.D. Verhoeven and E.D. Gibson: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1181–89.

    Article  Google Scholar 

  14. 14. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  15. 15. C. Wagner: Zeitschrift Für Elektrochemie, 1961, vol. 65, pp. 581–591.

    Google Scholar 

  16. 16. M. Kahlweit: Adv. Colloid Interface Sci., 1975, vol. 5, pp. 1–35.

    Article  Google Scholar 

  17. 17. M. V. Speight: Acta Metall., 1968, vol. 16, pp. 133–35.

    Article  Google Scholar 

  18. 18. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601–9.

    Article  Google Scholar 

  19. 19. B.A. Lindsley and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 341–51.

    Article  Google Scholar 

  20. 20. P. Deb and M.C. Chaturvedi: Metallography, 1982, vol. 354, pp. 341–54.

    Google Scholar 

  21. 21. A.R. Marder and B.L. Bramfitt: Metall. Trans. A, 1975, vol. 6, pp. 2009–14.

    Article  Google Scholar 

  22. 22. W.J. Nam and C.M. Bae: Scr. Mater., 1999, vol. 41, pp. 313–18.

    Article  Google Scholar 

  23. 23. A.M. Cree, R.G. Faulkner, and A.T. Lyne: Mater. Sci. Technol., 1995, vol. 11, pp. 566–71.

    Article  Google Scholar 

  24. 24. Z.Q. Lv, S.H. Sun, Z.H. Wang, M.G. Qv, P. Jiang, and W.T. Fu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 107–12.

    Article  Google Scholar 

  25. 25. R.V. Day and J. Barford: Nature, 1968, vol. 217, pp. 1145–46.

    Article  Google Scholar 

  26. 26. C.-Y. Li, J.. Blakely, and A.. Feingold: Acta Metall., 1966, vol. 14, pp. 1397–1402.

    Article  Google Scholar 

  27. 27. L. Richard and G. Krauss: Metall. Trans. A, 1976, vol. 7, pp. 983–89.

    Article  Google Scholar 

  28. 28. A.A. Vasilyev, S.F. Sokolov, N.G. Kolbasnikov, and D.F. Sokolov: Phys. Solid State, 2011, vol. 53, pp. 2194–2200.

    Article  Google Scholar 

  29. 29. G.H. Zhang, J.Y. Chae, K.H. Kim, and D.W. Suh: Mater. Charact., 2013, vol. 81, pp. 56–67.

    Article  Google Scholar 

  30. 30. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  31. F.S. Birks, N., Meier, and G.H. Pettit: Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, 2006.

  32. 32. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  Google Scholar 

  33. S.A. Saltikov: in Proc. Second Int. Congr. Stereol., Hans Elias, ed., Springer, Chicago, 1967, pp. 163–73.

  34. 34. D.L. Sahagian and A.A. Proussevitch: J. Volcanol. Geotherm. Res., 1998, vol. 84, pp. 173–96.

    Article  Google Scholar 

  35. 35. E. Limpert, W. a. Stahel, and M. Abbt: Bioscience, 2001, vol. 51, p. 341.

    Article  Google Scholar 

  36. 36. J. Heintzenberg: Aerosol Sci. Technol., 1994, vol. 21, pp. 46–48.

    Article  Google Scholar 

  37. 37. D.P. Yao, Y.Z. Zhang, Z.Q. Hu, Y.Y. Li, and C.X. Shi: Scr. Metall., 1989, vol. 23, pp. 537–41.

    Article  Google Scholar 

  38. 38. T. Krol, D. Baither, and E. Nembach: Acta Mater., 2004, vol. 52, pp. 2095–2108.

    Article  Google Scholar 

  39. 39. R.W. Heckel: Trans. Am. Soc. AIME, 1965, vol. 233, pp. 1994–2000.

    Google Scholar 

  40. 40. K.M. Vedula and R.W. Heckel: Metall. Trans., 1970, vol. 1, pp. 9–18.

    Google Scholar 

Download references

Acknowledgments

The authors appreciate Miller Centrifugal Casting for providing as-cast mill roll parts for this study, as well as their insightful discussions. This project was financed in part by a grant from the Commonwealth of Pennsylvania Department of Community and Economic Development (DCED), Developed in PA Program (D2PA). Funding support is also acknowledged from the National Science Foundation, CMMI Award No. 1436064. The authors acknowledge the use of the Materials Characterization Facility at Carnegie Mellon University supported by grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan A. Webler.

Additional information

Manuscript submitted December 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hecht, M.D., Picard, Y.N. & Webler, B.A. Coarsening of Inter- and Intra-granular Proeutectoid Cementite in an Initially Pearlitic 2C-4Cr Ultrahigh Carbon Steel. Metall Mater Trans A 48, 2320–2335 (2017). https://doi.org/10.1007/s11661-017-4012-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4012-2

Keywords

Navigation