Skip to main content
Log in

Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core–shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn’t necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J Royset: Met. Sci Tech, 2007, vol. 25, pp. 11–21.

    Google Scholar 

  2. Keith E. Knipling, David C. Dunand, and David N. Seidman: Z. Für Met., 2006, vol. 97, pp. 246–265.

    Article  Google Scholar 

  3. Shin-ichiro Fujikawa, Ken-ichi Hirano, and Yoshiaki Fukushima: Metall. Trans. A, n.d., vol. 9, pp. 1811–15.

    Article  Google Scholar 

  4. S. I. Fujikawa and K. Hirano: Defect Diffus. Forum, 1991, vol. 66–69, p. 447.

    Google Scholar 

  5. S. J. Rothman, N. L. Peterson, L. J. Nowicki, and L. C. Robinson: Phys. Status Solidi B, 1974, vol. 63, pp. K29–33.

    Article  Google Scholar 

  6. S. I. Fujikawa: Defect Diffus. Forum, 1997, vol. 143–147, pp. 115–20.

    Article  Google Scholar 

  7. D. Bergner and N. Van Chi: Wiss. Z. Padagogischen Hochsch., 1977, vol. 25, p. 15.

    Google Scholar 

  8. S. I. Fujikawa: JJapan Inst Light Met., 1996, vol. 46, p. 22.

    Google Scholar 

  9. Y.B. Kang, A.D. Pelton, P. Chartrand, and C.D. Fuerst: CALPHAD Comput Coupling Phase Diagr. Thermochem, 2008, vol. 32, pp. 413–22.

    Article  Google Scholar 

  10. Zaki Ahmad: JOM, 2003, vol. 55, pp. 35–39.

    Article  Google Scholar 

  11. Mineral Commodity Summaries 2015, U.S. Geological Survey, Reston, VA, 2015, p. 199.

  12. Emmanuel Clouet, Ludovic Laé, Thierry Épicier, Williams Lefebvre, Maylise Nastar, and Alexis Deschamps: Nat. Mater., 2006, vol. 5, pp. 482–88.

    Article  Google Scholar 

  13. H Okamoto: J Phase Equilib, 2002, vol. 23, pp. 455–56.

    Article  Google Scholar 

  14. Keith E. Knipling, Richard A. Karnesky, Constance P. Lee, David C. Dunand, and David N. Seidman: Acta Mater., 2010, vol. 58, pp. 5184–5195.

    Article  Google Scholar 

  15. David N. Seidman, Emmanuelle A. Marquis, and David C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–35.

    Article  Google Scholar 

  16. Christian B. Fuller, David N. Seidman, and David C. Dunand: Acta Mater., 2003, vol. 51, pp. 4803–814.

    Article  Google Scholar 

  17. A. J. Ardell: Metall. Trans. A, 1985, vol. 16, pp. 2131–65.

    Article  Google Scholar 

  18. Thomas Courtney: Mechanical Behavior of Materials, 2 edition, Waveland Pr Inc, Boston, 2005.

    Google Scholar 

  19. E. Nembach: Phys. Status Solidi A, 1983, vol. 78, pp. 571–81.

    Article  Google Scholar 

  20. L. S. Toropova, D. G. Eskin, M. L. Kharakterova, and T. V. Dobatkina: Advanced Aluminum Alloys Conta, Routledge, Amsterdam, The Netherlands, 1998.

    Google Scholar 

  21. M. Očko, E. Babić, and V. Zlatić: Solid State Commun., 1976, vol. 18, pp. 705–8.

    Article  Google Scholar 

  22. E Nes: Acta Metall., 1972, vol. 20, pp. 499–506.

    Article  Google Scholar 

  23. B. D. Cullity and S. R. Stock: Elements of X-Ray Diffraction, 3 edition, Pearson, Upper Saddle River, NJ, 2001.

    Google Scholar 

  24. Keith E. Knipling, David N. Seidman, and David C. Dunand: Acta Mater., 2011, vol. 59, pp. 943–954.

    Article  Google Scholar 

  25. Ofer Beeri, David C. Dunand, and David N. Seidman: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3501–09.

    Article  Google Scholar 

  26. C. Booth-Morrison, Z. Mao, M. Diaz, D. C. Dunand, C. Wolverton, and D. N. Seidman: Acta Mater., 2012, vol. 60, pp. 4740–52.

    Article  Google Scholar 

  27. H.-S. Kim, B. Madavali, S.-J. Hong, and T.-S. Kim: Int. J. Appl. Ceram. Technol., 2015.

  28. M. A. Korhonen, C. A. Paszkiet, R. D. Black, and Che-Yu Li: Scr. Metall. Mater., 1990, vol. 24, pp. 2297–2302.

    Article  Google Scholar 

  29. J. G. M. van Berkum, R. Delhez, Th. H. de Keijser, E. J. Mittemeijer, and P. van Mourik: Scr. Metall. Mater., 1991, vol. 25, pp. 2255–58.

    Article  Google Scholar 

  30. I. M. Lifshitz and V. V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  31. H. A. Calderon, P. W. Voorhees, J. L. Murray, and G. Kostorz: Acta Metall. Mater., 1994, vol. 42, pp. 991–1000.

    Article  Google Scholar 

  32. K. Hirano and S. I. Fujikawa: J. Nucl. Mater., 1978, vol. 69, pp. 564–66.

    Article  Google Scholar 

  33. Marcel A. Kerkove, Thomas D. Wood, Paul G. Sanders, Stephen L. Kampe, and Douglas Swenson: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3800–3805.

    Article  Google Scholar 

  34. K Fukunaga, T Shouji, and Y Miura: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 202–5.

    Article  Google Scholar 

  35. E. Nes: Acta Metall., 1972, vol. 20, pp. 499-506.

    Article  Google Scholar 

  36. E. A. Marquis and D. N. Seidman: Acta Mater., 2001, vol. 49, pp. 1909–19.

    Article  Google Scholar 

  37. Gabriel M Novotny and Alan J Ardell: Mater. Sci. Eng. A, 2001, vol. 318, pp. 144–54.

    Article  Google Scholar 

  38. [38] Mechanical Metallurgy: Principles and Application, 1st edition, Prentice-Hall, Inc., Englewood Cliffs, N.J, 1983.

    Google Scholar 

  39. C. L. Fu: J. Mater. Res., 1990, vol. 5, pp. 971–79.

    Article  Google Scholar 

  40. C. L. Fu and M. H. Yoo: Mater. Chem. Phys., 1992, vol. 32, pp. 25–36.

    Article  Google Scholar 

  41. E. P. George, D. P. Pope, C. L. Fu, and J. H. Schneibel: Trans. Iron Steel Inst. Jpn., 1991, vol. 31, pp. 1063–75.

    Article  Google Scholar 

  42. Harold J. Frost and M. F. Ashby (1982) Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Paul Fraley, Edward Laitila, Jennifer Eikenberry, and Daniel Seguin for their expertise and assistance in experimentation; Thomas Wood, Andrew Baker, Marcel Kerkove, and Cameron McNamara for helpful discussions; and the Office of Naval Research for sponsoring this work (Grant No. N00014-11-10876), Dr. William Mullins, Program Manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Sanders.

Additional information

Manuscript submitted October 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deane, K., Kampe, S.L., Swenson, D. et al. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys. Metall Mater Trans A 48, 2030–2039 (2017). https://doi.org/10.1007/s11661-017-3982-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3982-4

Keywords

Navigation