Skip to main content
Log in

Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present investigation, microtexture analysis using electron back-scattered diffraction technique has been performed to study fatigue- and creep-fatigue damages and associated deformation structures in Ti-6Al-4V alloy. Special emphasis has been given to low-angle grain boundary configuration and its possible application as a damage indicator. Damage is mostly present in the form of voids as investigated through scanning electron microscopy. Stored deformation energies have been evaluated for the strain-controlled fatigue-, the stress-controlled fatigue-, and the creep-fatigue-tested samples. Stored deformation energies have also been analyzed vis-à-vis total damage energies to quantify the contribution of damages to various samples. A relation between the stored deformation energy and the applied strain amplitude has been proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.C Picu and A. Majorell, Mater. Sci. Engg. A, 326 (2002) 306-316.

    Article  Google Scholar 

  2. M.R. Bache, Int. J. Fatigue, 25 (2003) 1079-1087.

    Article  Google Scholar 

  3. A. Wolfenden, Scripta Met., 4 (1970) 327-332.

    Article  Google Scholar 

  4. D. Kuhlmann-Wilsdorf and A. Wolfenden, Scripta Met., 3 (1969) 503-506.

    Article  Google Scholar 

  5. M. Naderi, A. Kahirdeh and M.M. Khonsari, Composites: Part B, 43 (2012) 1613–1620.

    Article  Google Scholar 

  6. V. Maurel, L. Rémy, F. Dahmen and N. Haddar, Int. J. Fatigue, 31 (2009) 952–961.

    Article  Google Scholar 

  7. J. Kumar, S.G.S. Raman, and V. Kumar: J. Nondestruct. Eval., 2016, vol. 35, pp. 1–10.

    Article  Google Scholar 

  8. P. Castany, F. Pettinari-Sturmel, J. Crestoum, J. Douin and A. Coujou, Acta Mater., 55 (2007) 6284-6291.

    Article  Google Scholar 

  9. J. Warren and D.Y. Wei, Int. J. Fatigue, 32 (2010) 1853-1861.

    Article  Google Scholar 

  10. V. Sinha, J.E. Spowart, M.J. Mills and J.C. Williams, Met. Trans. A, 37A (2006) 1507-1518.

    Article  Google Scholar 

  11. D. R Swalla and R. W. Neu, Tribology Int., 39 (2006) 1016-1027.

    Article  Google Scholar 

  12. K. Le Biavant, S. Pommier and C. Prioul, Fat. Frat. Engg. Mater. Struct., 25 (2002) 527-545.

    Article  Google Scholar 

  13. I. Bantounas, T.C. Lindley, D. Rugg and D. Dye, Acta Mater., 55 (2007) 5655-5665.

    Article  Google Scholar 

  14. Z.F. Zhang, H.C. Gu and X.L. Tan, Mater. Sci. Eng. A, 252 (1998) 85-92.

    Article  Google Scholar 

  15. F. Bridier, P. Villechaise and J. Mendez, Acta Mater., 56 (2008) 3951-3962.

    Article  Google Scholar 

  16. F. Bridier, P. Villechaise and J. Mendez, Acta Mater., 53 (2005) 555-567.

    Article  Google Scholar 

  17. P.D. Littlewood and A.J. Wilkinson, Int. J. Fatigue, 43 (2012) 111-119.

    Article  Google Scholar 

  18. L. Xio and Y. Umakoshi, Mater. Sci. Engg. A, 339 (2003) 63-72.

    Article  Google Scholar 

  19. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert and M.A. Crimp, Acta Mater., 61 (2013) 7555-7567.

    Article  Google Scholar 

  20. H. Li, C.J. Boehlert, T.R. Bieler and M. A. Crimp, Met. Trans. A, 45A (2014) 6053-6066.

    Article  Google Scholar 

  21. S. Suri, G.B. Viswanathan, T. Neeraj, D-H. Hou and M.J. Mills, Acta Mater., 47 (1999) 1019-1034.

    Article  Google Scholar 

  22. T. Neeraj, M.F. Savage, J. Tatalovich, L. Kovarik, R.W. Hayes and M. J. Mills, Phil. Mag., 85 (2-3) (2005) 279-295.

    Article  Google Scholar 

  23. D. Deka, D.S. Joseph, S. Ghosh and M.J. Mills, Met. Mater. Trans., 37A (2006)1371-1388.

    Article  Google Scholar 

  24. M.F. Savage, J. Tatalovich, M. Zupan, K.J. Hemker and M.J. Mills, Mater. Sci. Engg. A, 319-321 (2001) 398-403.

    Article  Google Scholar 

  25. J. Geathers, C.J. Torbet, J.W. Jones and S. Daly, Int. J. Fatigue, 70 (2015) 154-162.

    Article  Google Scholar 

  26. J. Jiang, T.B. Britton and A.J. Wilkinson, Acta Mater., 94 (2015) 193-204.

    Article  Google Scholar 

  27. M. Kamaya. Mater. Charact., 60 (2009) 1454-1462.

    Article  Google Scholar 

  28. M. Kamaya. Fat. Fract. Eng. Mater. Struct., 33 (2010) 94-104.

    Article  Google Scholar 

  29. M. Kamaya and M. Kuroda. Mater. Charact., 52 (2011) 1168-76.

    Google Scholar 

  30. P.D. Littlewood, T.B. Britton and A.J. Wilkinson, Acta Mater., 59 (2011) 6489-6500.

    Article  Google Scholar 

  31. P.D. Littlewood and A.J. Wilkinson, Acta Mater., 60 (2012) 5516-5525.

    Article  Google Scholar 

  32. F.P.E. Dunne, Current Opinion in Solid State and Materials Science, 18 (2014) 170-179.

    Article  Google Scholar 

  33. T.B. Britton and A.J. Wilkinson, Acta Mater., 60 (2012) 5773-5782.

    Article  Google Scholar 

  34. C. J. Szczepanski, S. K. Jha, P. A. Shade, R. Wheeler, J. M. Larsen, Int. J. Fatigue, 57 (2013) 131-139.

    Article  Google Scholar 

  35. M. Gerland, P. Lefranc, V. Doquet, C. Sarrazin-Baudoux, Mater. Sci. Engg. A, 507 (2009) 132-143.

    Article  Google Scholar 

  36. J. White, M.H. Loretto, and R.E.S. Smalman: Proc. 5th Int. Conf. Titanium, vol. 4, DGM, Oberusel, 1984, pp. 2297–2304.

  37. P.O. Tympel, T.C. Lindley, E.A. Saunders, M. Dixon, D. Dye, Acta Mater., 103 (2016) 77-88.

    Article  Google Scholar 

  38. M.A. Sangid, Int. J. Fatigue, 57 (2013) 58-72.

    Article  Google Scholar 

  39. A.S. Beranger, X. Feaugas and M. Clavel, Mater. Sci. Engg. A, 172 (1993) 31-41.

    Article  Google Scholar 

  40. X. Feaugas and M. Clavel, Acta Mater., 45 (1997) 2685-2701.

    Article  Google Scholar 

  41. P. Konijnenberg, S. Zaefferer, D. Rabbe,Acta Mater.,99 (2015) 402-414.

    Article  Google Scholar 

  42. J. Jiang, J. Yang, T. Zhang, F. P.E. Dunne and T. B. Britton, Acta Mater., 97 (2015) 367-379.

    Article  Google Scholar 

  43. F.J. Humphreys, M. Hatherly, In: Recrystallization and Related Annealing Phenomena; Elsevier Ltd, U.K. (2004).

    Google Scholar 

  44. F.P.E. Dunne and D. Rugg, Fat. Fract. Engg. Mat. Struct., 31 (2008) 949-958.

    Article  Google Scholar 

  45. G.Kang, Y. Dong, Y. Liu and H. Jiang, Mater. Charact., 92 (2014) 26-35.

    Article  Google Scholar 

  46. J. Peng, C.Y. Zhou, Q. Dai and X.H. He, Mater. Design, 71 (2015) 1-16.

    Article  Google Scholar 

  47. J. Kumar, S.G.S. Raman, and V. Kumar: Trans. IIM, 2016, vol. 69, pp. 349-352.

    Google Scholar 

  48. H. Kronmuller and M. Wilkens, Scripta Met., 3 (1969) 495-502.

    Article  Google Scholar 

  49. W.Q. Cao, C.F. Gu, E.V. Pereloma and C.H.J. Davis, Mater. Sci. Engg. A, 492 (2008) 74-79.

    Article  Google Scholar 

  50. M. Taheri, W. Weiland and A.D. Rollett, Met. Mater. Trans. A, 37 (2006) 19-25.

    Article  Google Scholar 

  51. J. Nye, Acta Metall., 1 (1953) 153-162.

    Article  Google Scholar 

  52. Q. Sun, Q. Guo, X. Yao, L. Xiao, J.E. Greer and J. Sun, Scripta Mater., 65 (2011) 473-476.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Dr. S.V. Kamat, the Director, DMRL; and the Defence Research and Development Organization (DRDO), New Delhi, for funding the above research. The fruitful technical discussions with Mr. V. Singh and Mrs. V.L. Niranjani are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalaj Kumar.

Additional information

Manuscript submitted June 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Singh, A.K., Raman, S.G.S. et al. Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy. Metall Mater Trans A 48, 648–658 (2017). https://doi.org/10.1007/s11661-016-3869-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3869-9

Keywords

Navigation