Skip to main content
Log in

Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The densification behavior of mixed Ti and Al/V master alloy powders for Ti-6Al-4V was investigated by a series of dilatometry tests to measure the shrinkage of the samples with the sintering temperature. The corresponding microstructural changes were examined under various sintering conditions with optical microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyses. From these results, the consolidation of the mixed powders was divided into two domains: (i) sintering densification and solute homogenization of Ti and Al/V master alloy particles below 1293 K (1020 °C), and (ii) densification of Ti alloy phases above 1293 K (1020 °C). In the lower temperature region, the inter-diffusion between Ti and Al/V master alloy particles dominated the sintering of the mixed powders because the chemical gradient between two types of particles outweighed the surface energy reduction. Following chemical homogenization, the densification induced the shrinkage of the Ti alloy phases to reduce their surface energies. These tendencies are also supported by the density and grain size variations of the sintered specimens with temperature. The apparent activation energies of the sintering and grain growth for Ti alloy particles are 85.91 ± 6.93 and 37.33 kJ/mol, respectively, similar to or slightly lower than those of pure Ti particles. The difference was attributed to the slower self-diffusion of Ti resulting from the alloying of Al and V into in the Ti matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Leyens and M. Peters: Titanium and Titanium Alloys, Wiley-VCH GmbH, Weinheim, 2003, pp.1-3.

    Book  Google Scholar 

  2. F.H. Froes and D. Eylon: Int. Mater. Rev, 1990, vol. 35, pp. 162-184.

    Article  Google Scholar 

  3. M. Qian: Int. J. Powder Metall., 2010, vol. 46, pp. 29-44.

    Google Scholar 

  4. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran, M. Dunstan: Scripta Mater., 2015, vol. 107, pp. 103-106.

    Article  Google Scholar 

  5. P. Kumar, K.S.R. Chandran, F. Cao, M. Koopman, Z.Z. Fang: Metall. Mat. Trans. A., 2016, online available

  6. D.M. Bowden and W.H. Peter: DE-EE0003480, The Boeing Company, St. Louis, MO, 2012.

    Google Scholar 

  7. Anon.: Metal Powder Report, 2006, vol. 61, pp. 4.

  8. J.E. Barnes, W. Peter and C.A. Blue: Mater. Sci. Forum, 2009, Vol. 618-79, pp.165-8.

    Article  Google Scholar 

  9. M. Qian and F.H. Froes: Titanium Powder Metallurgy, Butterworth-Heinemann, Oxford, UK, 2015, pp. 299-312.

    Google Scholar 

  10. B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda and P. Ramakrishnan: Mater. Sci. Eng. A., 2005, vol. 396, pp.255-262.

    Article  Google Scholar 

  11. B.B. Panigrahi, M.M. Godkhindi: J. Mater. Res., 2005, vol. 20, pp.827-36.

    Article  Google Scholar 

  12. B.B. Panigrahi, M.M. Godkhindi: Intermetallics, 2006, vol. 14, pp.130-5.

    Article  Google Scholar 

  13. Y.F. Yang, S.D. Luo, G.B. Schaffer and M. Qian: Metall. Mat. Trans. A., 2012, vol. 43, pp. 4896-906

    Article  Google Scholar 

  14. Y.F. Yang, S.D. Luo, G.B. Schaffer and M. Qian: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6719-26

    Article  Google Scholar 

  15. S. Abkowitz, J.M. Siergiej and R.D. Regan: Mod. Dev. Powder Metall., 1971, vol. 4, pp.501-11.

    Google Scholar 

  16. J.E. Smugeresky and D.B. Dowson: Powder Tech., 1981, vol.30, pp.87-94.

    Article  Google Scholar 

  17. T. Fujita, A. Ogawa, C. Ouchi, H. Tajima: Mater. Sci. Eng. A., 1996, vol. 213, pp. 148-53.

    Article  Google Scholar 

  18. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik and D.G. Savvakin: Key Eng. Mat.,2000, vol.188, pp.55-62.

    Article  Google Scholar 

  19. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk and D.G. Savvakin: Defect Diffus. Forum, 2008, vol.277, pp. 177-85

    Google Scholar 

  20. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik and D.G. Savvakin: Key Eng. Mat.,2000, vol.188, pp.55-62.

    Article  Google Scholar 

  21. Aerospace Material Specification (AMS) 4998, Titanium Alloy Powder (6Al-4V)

  22. M.I. Mendelson: J. Am. Ceram. Soc., 1969, vol.52, pp.443-6

    Article  Google Scholar 

  23. L.C. Pathak, S.K. Mishra, P.G. Mukunda, M.M. Godkhindi, D. Bhattacharya and K.L. Chopra: J. Mater. Sci., 1994, vol.29, pp.5455-61

    Article  Google Scholar 

  24. J.R. Groza and R.J. Dowding: Nanostruct. Mater., 1996, vol.7, pp.749-68

    Article  Google Scholar 

  25. M. Koppers, CHR. Herzig, M. Friesel and Y. Mishin: Acta Mater., 1997, vol.45, pp.4181-97.

  26. J.F. Murdock and C.J. McHargue, Acta Metall., 1968, vol.16, pp.493-509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ho Jin Ryu or Soon Hyung Hong.

Additional information

Manuscript submitted January 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lee, J., Lee, B. et al. Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders. Metall Mater Trans A 47, 4616–4624 (2016). https://doi.org/10.1007/s11661-016-3607-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3607-3

Keywords

Navigation