Skip to main content
Log in

Microstructural Evolution During Multi-Pass Friction Stir Processing of a Magnesium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A commercial magnesium alloy was processed through multi-pass and multi-directional (unidirectional, reverse, and transverse tool movements) friction stir processing (FSP). Based on the FSP location, the dominant prior-deformation basal texture was shifted along the arc of a hypothetical ellipse. The patterns of deformation texture developments were captured by viscoplastic self-consistent modeling with appropriate velocity gradients. The simulated textures, however, had two clear deficiencies. The simulations involved shear strains of 0.8 to 1.0, significantly lower than those expected in the FSP. Even at such low shear, the simulated textures were significantly stronger. Microstructural observations also revealed the presence of ultra-fine grains with relatively weak crystallographic texture. Combinations of ultra-fine grain superplasticity followed by grain coarsening were proposed as the possible mechanism for the microstructural evolution during FSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37–45 (2001).

    Article  Google Scholar 

  2. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs, JOM 60, 57–62 (2008).

    Article  Google Scholar 

  3. A. Luo, Mater. Sci. Forum 419-422, 57–66 (2003).

    Article  Google Scholar 

  4. K.U. Kainer, Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications (2003).

  5. S. R. Agnew and Ö. Duygulu, Int. J. Plast. 21, 1161–93 (2005).

    Article  Google Scholar 

  6. S. R. Agnew, J. W. Senn, and J. A. Horton, JOM 58, 62–69 (2006).

    Article  Google Scholar 

  7. S. R. Agnew and O. Duygulu, Mater. Sci. Forum 419-422, 177–88 (2003).

    Article  Google Scholar 

  8. F.-K. Chen and T.-B. Huang, J. Mater. Process. Technol. 142, 643–47 (2003).

    Article  Google Scholar 

  9. Y. Wang and J. Huang, Mater. Chem. Phys. 81, 11–26 (2003).

    Article  Google Scholar 

  10. B. Hutchinson, Int. J. Mater. Res. 100, 556–63 (2009).

    Article  Google Scholar 

  11. W. B. Hutchinson and M. R. Barnett, Scr. Mater. 63, 737–40 (2010).

    Article  Google Scholar 

  12. H. T. Jeong and T. K. Ha, J. Mater. Process. Technol. 187-188, 559–61 (2007).

    Article  Google Scholar 

  13. G. Huang, Q. Liu, L. Wang, R. Xin, X. Chen, and F. Pan, Trans. Nonferrous Met. Soc. China 18, s170–s174 (2008).

    Article  Google Scholar 

  14. A. Styczynski, C. Hartig, J. Bohlen, and D. Letzig, Scr. Mater. 50, 943–47 (2004).

    Article  Google Scholar 

  15. M. Wang, R. Xin, B. Wang, and Q. Liu, Mater. Sci. Eng. A 528, 2941–51 (2011).

    Article  Google Scholar 

  16. M. R. Barnett, M. D. Nave, and C. J. Bettles, Mater. Sci. Eng. A 386, 205–11 (2004).

    Article  Google Scholar 

  17. M. D. Nave and M. R. Barnett, Scr. Mater. 51, 881–85 (2004).

    Article  Google Scholar 

  18. J. Bohlen, M. R. Nürnberg, J. W. Senn, D. Letzig, and S. R. Agnew, Acta Mater. 55, 2101–12 (2007).

    Article  Google Scholar 

  19. N. Stanford and M. R. Barnett, Mater. Sci. Eng. A 496, 399–408 (2008).

    Article  Google Scholar 

  20. P. Bakke, K. Pettersen, and H. Westengen, JOM 55, 46–51 (2003).

    Article  Google Scholar 

  21. S. Liang, H. Sun, Z. Liu, and E. Wang, J. Alloys Compd. 472, 127–32 (2009).

    Article  Google Scholar 

  22. G. Vespa, L. W. F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, and S. Yue, Mater. Sci. Eng. A 487, 243–50 (2008).

    Article  Google Scholar 

  23. K. Matsubara, Y. Miyahara, Z. Horita, and T. G. Langdon, Acta Mater. 51, 3073–3084 (2003).

    Article  Google Scholar 

  24. G. Bhargava, W. Yuan, S. S. Webb, and R. S. Mishra, Metall. Mater. Trans. A 41, 13–17 (2009).

    Google Scholar 

  25. J. A. del Valle, F. Carreño, and O. A. Ruano, Acta Mater. 54, 4247–59 (2006).

    Article  Google Scholar 

  26. R. B. Figueiredo and T. G. Langdon, Mater. Sci. Eng. A 430, 151–56 (2006).

    Article  Google Scholar 

  27. L. Kestens, R. H. Petrov, P. Gobernado, and E. Leunis, Solid State Phenom. 160, 23–29 (2010).

    Article  Google Scholar 

  28. Z. Y. Ma, R. S. Mishra, and M. W. Mahoney, Acta Mater. 50, 4419–30 (2002).

    Article  Google Scholar 

  29. Z. Y. Ma, Metall. Mater. Trans. A 39, 642–58 (2008).

    Article  Google Scholar 

  30. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R Reports 50, 1–78 (2005).

    Article  Google Scholar 

  31. R. Nandan, T. Debroy, and H. K. D. H. Bhadeshia, Prog. Mater. Sci. 53, 980–1023 (2008).

    Article  Google Scholar 

  32. Y. N. Zhang, X. Cao, S. Larose, and P. Wanjara, Can. Metall. Q. 51, 250–61 (2012).

    Article  Google Scholar 

  33. K. Elangovan and V. Balasubramanian, Mater. Des. 29, 362–73 (2008).

    Article  Google Scholar 

  34. A. Arora, R. Nandan, A. P. Reynolds, and T. DebRoy, Scr. Mater. 60, 13–16 (2009).

    Article  Google Scholar 

  35. K. Elangovan and V. Balasubramanian, Mater. Sci. Eng. A 459, 7–18 (2007).

    Article  Google Scholar 

  36. W. Yuan, S. K. Panigrahi, and R. S. Mishra, Metall. Mater. Trans. A 44, 3675–84 (2013).

    Article  Google Scholar 

  37. S. H. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, and P. Wanjara, Metall. Mater. Trans. A 44, 41–44 (2012).

    Google Scholar 

  38. K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, Mater. Sci. Eng. A 437, 274–80 (2006).

    Article  Google Scholar 

  39. Z. Y. Ma, S. R. Sharma, and R. S. Mishra, Scr. Mater. 54, 1623–26 (2006).

    Article  Google Scholar 

  40. R. W. Fonda, J. F. Bingert, and K. J. Colligan, Scr. Mater. 51, 243–48 (2004).

    Article  Google Scholar 

  41. D. P. Field, T. W. Nelson, Y. Hovanski, and K. V Jata, Metall. Mater. Trans. A 32, 2869–77 (2001).

    Article  Google Scholar 

  42. A. Arora, Z. Zhang, A. De, and T. DebRoy, Scr. Mater. 61, 863–66 (2009).

    Article  Google Scholar 

  43. C. N. Tomé, P. J. Maudlin, R. A. Lebensohn, and G. C. Kaschner, Acta Mater. 49, 3085–3096 (2001).

    Article  Google Scholar 

  44. L. Commin, M. Dumont, J.-E. Masse, and L. Barrallier, Acta Mater. 57, 326–34 (2009).

    Article  Google Scholar 

  45. C. I. Chang, C. J. Lee, and J. C. Huang, Scr. Mater. 51, 509–14 (2004).

    Article  Google Scholar 

  46. C. I. Chang, X. H. Du, and J. C. Huang, Scr. Mater. 57, 209–212 (2007).

    Article  Google Scholar 

  47. K. V. Jata and S. L. Semiatin, Scr. Mater. 43, 743–49 (2000).

    Article  Google Scholar 

  48. B. M. Darras, J. Mater. Eng. Perform. 21, 1243–48 (2011).

    Article  Google Scholar 

  49. U. F. H. R. Suhuddin, S. Mironov, Y. S. Sato, H. Kokawa, and C.-W. Lee, Acta Mater. 57, 5406–5418 (2009).

    Article  Google Scholar 

  50. A. Tripathi, A. Tewari, N. Srinivasan, G. M. Reddy, S. M. Zhu, J. F. Nie, R. D. Doherty, and I. Samajdar, Metall. Mater. Trans. A 46, 3333–36 (2015).

    Article  Google Scholar 

  51. W. Yuan, R. S. Mishra, B. Carlson, R. K. Mishra, R. Verma, and R. Kubic, Scr. Mater. 64, 580–83 (2011).

    Article  Google Scholar 

  52. M. D. Abràmoff, I. Hospitals, P. J. Magalhães, and M. Abràmoff, Biophotonics Int. 11 (7), 36–41 (2004).

    Google Scholar 

  53. A. J. Schwartz, M. Kumar, and B. L. Adams, Electron Backscatter Diffraction in Materials Science, Second Edition (2000).

    Book  Google Scholar 

  54. O. Engler and V. Randle, Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping, Second Edition, CRC press, Boca Raton (2010).

    Google Scholar 

  55. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63–68 (2010).

    Article  Google Scholar 

  56. R. Hielscher and H. Schaeben, J. Appl. Crystallogr. 41, 1024–1037 (2008).

    Article  Google Scholar 

  57. R. M. Langford and C. Clinton, Micron 35, 607–11 (2004).

    Article  Google Scholar 

  58. R. A. Lebensohn, C. N. Tome, Acta Mater. 41, 2611–24 (1993).

    Article  Google Scholar 

  59. H. Yoshinaga, R. Horiuchi, Trans. JIM 4, 134 (1963).

    Google Scholar 

  60. B. C. Liechty and B. W. Webb, J. Mater. Process. Technol. 208, 431–43 (2008).

    Article  Google Scholar 

  61. J. Young, D. Field, and T. Nelson, Metall. Mater. Trans. A 44, 3167–75 (2013).

    Article  Google Scholar 

  62. J. M. Root, D. P. Field, and T. W. Nelson, Metall. Mater. Trans. A 40, 2109–14 (2009).

    Article  Google Scholar 

  63. S. H. C. Park, Y. S. Sato, and H. Kokawa, Metall. Mater. Trans. A 34, 987–94 (2003).

    Article  Google Scholar 

  64. J.-H. Cho, D. E. Boyce, and P. R. Dawson, Mater. Sci. Eng. A 398, 146–63 (2005).

    Article  Google Scholar 

  65. J.-H. Cho and P. R. Dawson, Metall. Mater. Trans. A 37, 1147–64 (2006).

    Article  Google Scholar 

  66. H.-H. Cho, S.-T. Hong, J.-H. Roh, H.-S. Choi, S. H. Kang, R. J. Steel, and H. N. Han, Acta Mater. 61, 2649–61 (2013).

    Article  Google Scholar 

  67. H. N. B. Schmidt, T. L. Dickerson, and J. H. Hattel, Acta Mater. 54, 1199–209 (2006).

    Article  Google Scholar 

  68. R. Nandan, G. G. Roy, and T. Debroy, Metall. Mater. Trans. A 37A, 1247–59 (2006).

    Article  Google Scholar 

  69. R. Nandan, G. G. Roy, T. J. Lienert, and T. Debroy, Sci. Technol. Weld. Join. 11, 526–37 (2006).

    Article  Google Scholar 

  70. P. Heurtier, C. Desrayaud, and F. Montheillet, Mater. Sci. Forum 396-402, 1537–42 (2002).

    Article  Google Scholar 

  71. J. A. Schneider and A. C. Nunes, Metall. Mater. Trans. B 35, 777–83 (2004).

    Article  Google Scholar 

  72. R. W. Fonda and J. F. Bingert, Metall. Mater. Trans. A 35, 1487–99 (2004).

    Article  Google Scholar 

  73. B. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, Thermomechanical Processing of Metallic Materials, First Edition (Pergamon Materials Series, 2007) Elsevier, Amsterdam.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the use of the National Facility of Texture & OIM, IIT Bombay (a DST-IRPHA facility) for this study. The financial support from Naval Research Board (India) is also acknowledged. The authors also greatly acknowledge access to the Transmission Electron Microscopy facility of the Monash Centre for Electron Microscopy (MCEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted November 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Tewari, A., Kanjarla, A.K. et al. Microstructural Evolution During Multi-Pass Friction Stir Processing of a Magnesium Alloy. Metall Mater Trans A 47, 2201–2216 (2016). https://doi.org/10.1007/s11661-016-3403-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3403-0

Keywords

Navigation