Skip to main content
Log in

Recrystallization and the Development of Abnormally Large Grains After Small Strain Deformation in a Polycrystalline Nickel-Based Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of abnormally large grains has been investigated in the polycrystalline nickel-based superalloy René 88DT. Cylindrical specimens with a 15 μm grain size were compressed to plastic strains up to 11.0 pct and subsequently rapidly heated to above the γ′ solvus at 1423 K (1150 \(^\circ \)C) and held for 60 seconds. All deformed samples partially recrystallized during the heat treatment, with the recrystallized grain size varying with the degree of deformation. The largest final grain size occurred in samples deformed to approximately 2 pct strain, with isolated grains as large as 700 μm in diameter observed. It is proposed that abnormally large grains appear due to nucleation-limited recrystallization, not abnormal grain growth, based on the high boundary velocities measured and the observed reduction in grain orientation spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miao J, Pollock TM, Wayne Jones J. Acta Materialia 2009;57:5964.

    Article  Google Scholar 

  2. Miao J, Pollock TM, Wayne Jones J. Acta Materialia 2012;60:2840.

    Article  Google Scholar 

  3. Healy JC, Grabowski L, Beevers CJ. Fatigue & Fracture of Engineering Materials & Structures 1992;15:309.

    Article  Google Scholar 

  4. A. Shyam, C.J. Torbet, S.K. Jha, J.M. Larsen, M.J. Caton, C.J. Szczepanski, T.M. Pollock, and J.W. Jones: 10th Int. Symp. Superalloys, Champion, PA, September 2004, pp. 19–23.

  5. Humphreys F, Hatherly M. Recrystallization and related annealing phenomena. Pergamon, Oxford, Elsevier2004.

    Google Scholar 

  6. Doherty R.D., Hughes D.A., Humphreys F.J., Jonas J.J., Juul Jensen D., Kassner M.E., King W.E., McNelley T.R., McQueen H.J., Rollett A.D. Materials Today 1998;1:14.

    Article  Google Scholar 

  7. Bozzolo N, Agnoli A, Soua N, Bernacki M, Log RE. Materials Science Forum 2013;753:321.

    Article  Google Scholar 

  8. Agnoli A, Bernacki M, Log R, Franchet JM, Laigo J, Bozzolo N. Metallurgical and Materials Transactions A 2015.

    Article  Google Scholar 

  9. P. Cotterill and P. Mould: Recrystallization and Grain Growth in Metals, Wiley, New York 1976.

    Google Scholar 

  10. Dunn C, Walter J. In: Recrystallization, Grain Growth and Textures: Papers presented at a seminar of the American Society for Metals October 16 and 17, 1965. Metals Park, OH: American Society for Metals, 1966, 461-522.

    Google Scholar 

  11. May JE, Turnbull D. Trans Metall Soc AIME 1958;212:769.

    Google Scholar 

  12. Gladman T. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1966;294:298.

    Article  Google Scholar 

  13. Messina R, Soucail M, Kubin L. Materials Science and Engineering: A 2001;308:258.

    Article  Google Scholar 

  14. Andersen I., Grong, Ryum N.. Acta Metallurgica et Materialia 1995;43:2689.

    Article  Google Scholar 

  15. Payton E, Wang G, Mills M, Wang Y. Acta Materialia 2013;61:1316.

    Article  Google Scholar 

  16. Zhu J, Wang T, Ardell A, Zhou S, Liu Z, Chen L. Acta Materialia 2004;52:2837.

    Article  Google Scholar 

  17. E. Payton, G. Wang, N. Ma, Y. Wang, M. Mills, D. Whitis, D. Mourer, and D. Wei: 11th Int. Symp. Superalloys, Champion, PA, September 2008, pp. 975–984.

  18. Hibbard G, Radmilovic V, Aust K, Erb U. Materials Science and Engineering: A 2008;494:232.

    Article  Google Scholar 

  19. Aust K, Rutter J. Trans AIME 1959;215:119.

    Google Scholar 

  20. Kim SG, Park YB. Acta Materialia 2008;56:3739.

    Article  Google Scholar 

  21. Lee YC, Dahle AK, StJohn DH. Metallurgical and Materials Transactions A 2000;31:2895.

    Article  Google Scholar 

  22. Lee SB, Yoon DY, Henry MF. Acta materialia 2000;48:3071.

    Article  Google Scholar 

  23. Hibbard G, McCrea J, Palumbo G, Aust K, Erb U. Scripta Materialia 2002;47:83.

    Article  Google Scholar 

  24. Srolovitz DJ, Grest GS, Anderson MP. Acta Metallurgica 1985;33:2233.

    Article  Google Scholar 

  25. Rollett A, Srolovitz DJ, Anderson MP. Acta Metallurgica 1989;37:1227.

    Article  Google Scholar 

  26. Riontino G, Antonione C, Battezzati L, Marino F, Tabasso MC. Journal of Materials Science 1979;14:86.

    Article  Google Scholar 

  27. Petrovic J, Ebert L. Metallurgical Transactions 1972;3:1131.

    Article  Google Scholar 

  28. Cho YK, Yoon DY, Henry MF. Metallurgical and Materials Transactions A 2001;32:3077.

    Article  Google Scholar 

  29. Valiev RZ, Gertsman VY, Kaibyshev OA. Scripta metallurgica 1983;17:853.

    Article  Google Scholar 

  30. Bennett TA, Kalu PN, Rollett AD. Microscopy and Microanalysis 2011;17:362.

    Article  Google Scholar 

  31. D.A. DeMania: Recovery and Recrystallization in Nickel-based Superalloy René 88 DT. PhD, University of Virginia, 2002.

  32. Burke J, Turnbull D. Progress in Metal Physics 1952;3:220.

    Article  Google Scholar 

  33. J. Christian: The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 2002. pp. 832–858.

    Book  Google Scholar 

  34. Beck PA, Sperry PR. Journal of Applied Physics 1950;21:150.

    Article  Google Scholar 

  35. Bellier S, Doherty RD. Acta Metallurgica 1977;25:521.

    Article  Google Scholar 

  36. Bailey JE, Hirsch PB. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1962;267:11.

    Article  Google Scholar 

  37. Tu WJ, Pollock TM. Metallurgical and Materials Transactions A 2010;41:2002.

    Article  Google Scholar 

  38. JC Stinville, MP Echlin, D Texier, F Bridier, P Bocher, TM Pollock: Exp. Mech. 2015. doi:10.1007/s11340-015-0083-4.

    Google Scholar 

  39. Humphreys FJ. Scripta materialia 2000;43:591.

    Article  Google Scholar 

  40. Fridman EM, Kopesky CV, Shwindlerman LS. Zeitschrift fur Metallkunde 1975;66:533.

    Google Scholar 

  41. Huang Y, Humphreys FJ. Acta materialia 1999;47:2259.

    Article  Google Scholar 

  42. Jin Y, Lin B, Bernacki M, Rohrer G, Rollett A, Bozzolo N. Materials Science and Engineering: A 2014;597:295.

    Article  Google Scholar 

  43. Lee SB, Yoon DY, Hwang NM, Henry MF. Metallurgical and Materials Transactions A 2000; 31:985.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Air Force Center of Excellence (Grant # FA9550-12-1-0445). V.M. Miller would like to gratefully acknowledge the support of a UC Regents’ Special Fellowship. The MRL Shared Experimental Facilities are supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria M. Miller.

Additional information

Manuscript submitted August 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, V.M., Johnson, A.E., Torbet, C.J. et al. Recrystallization and the Development of Abnormally Large Grains After Small Strain Deformation in a Polycrystalline Nickel-Based Superalloy. Metall Mater Trans A 47, 1566–1574 (2016). https://doi.org/10.1007/s11661-016-3329-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3329-6

Keywords

Navigation