Skip to main content
Log in

Study and Suppression of the Microstructural Anisotropy Generated During the Consolidation of a Carbonyl Iron Powder by Field-Assisted Hot Pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A spherical carbonyl iron powder was consolidated by the field-assisted hot pressing technique using graphite tools at two different temperatures, both above the austenitizing temperature. The microstructures obtained exhibited a compositional gradient in carbon along the consolidated material. Thus, the outer rim of the cylindrical samples was composed of cementite and pearlite that gradually turned to pearlite, leading to a fully ferritic microstructure at the core of the sample. The increase in the temperature has led to a higher introduction of carbon within the sample. The interposition of a thin tungsten foil between the graphite die/punches and the powders has significantly reduced the diffusion of the carbon through the iron matrix and has suppressed the microstructural anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Omori: Mater. Sci. Eng. A, 2000, vol. 287, pp. 183-88.

    Article  Google Scholar 

  2. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127-287.

    Article  Google Scholar 

  3. S. Grasso,Y. Sakka,G. Maizza: Sci. Technol. Adv. Mater., 2009, Vol. 10, pp. 1-24.

    Article  Google Scholar 

  4. D.V. Quach, J.R. Groza, A. Zavaliangos, and U. Anselmi-Tamburini: 10—Fundamentals and Applications of Field/Current Assisted Sintering: Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publishing, Abington, 2010, pp. 249–74.

    Google Scholar 

  5. O. Guillon, J. González-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann: Adv. Eng. Mater., 2014, vol. 16, pp. 830-49.

    Article  Google Scholar 

  6. S. Libardi, M. Zadra, F. Casari, A. Molinari: Mater. Sci. Eng. A, 2008, vol. 478, pp. 243-50.

    Article  Google Scholar 

  7. M. Pellizzari, A. Fedrizzi, M. Zadra: Mater. Des., 2011, vol. 32, pp. 1796-1805.

    Article  Google Scholar 

  8. S. Pandya, K.S. Ramakrishna, A.R. Annamalai, A. Upadhyaya: Mater. Sci. Eng. A, 2012, vol. 556, pp. 271-77.

    Article  Google Scholar 

  9. R. Muñoz-Moreno, E.M. Ruiz-Navas, B. Srinivasarao, J.M. Torralba: J. Mater. Sci. Technol., 2014, vol. 30, pp. 1145-54.

    Article  Google Scholar 

  10. B. Srinivasarao, J.M. Torralba, M.A. Jabbari Taleghani, M.T. Pérez-Prado: Mater. Lett, 2014, Vol. 123, pp. 75-78,

    Article  Google Scholar 

  11. K. Feng, Y. Yang, M. Hong, J. Wu, S. Lan: J. Mater. Process. Technol., 2008, vol. 208, pp. 264-69.

    Article  Google Scholar 

  12. J. Räthel, M. Herrmann, W. Beckert: J. Eur. Ceram. Soc., 2009, vol. 29, pp. 1419-25.

    Article  Google Scholar 

  13. G. Bernard-Granger, N. Benameur, C. Guizard, M. Nygren: Scr. Mater., 2009, vol. 60, pp. 164-67.

    Article  Google Scholar 

  14. Y. Liu, Z. Jin: Ceram. Int., 2012, vol. 38, pp. 217-22.

    Article  Google Scholar 

  15. W. Wang, H. Kou, S.Liu, Y. Shi, J. Li, X. Feng, Y. Pan, Y. Li, J. Guo: Ceram. Int., 2015, vol. 41, pp. 2576-81.

    Article  Google Scholar 

  16. H.K.D.H. Bhadeshia, R.W.K. Honeycombe: Steels, Third Edition, Butterworth-Heinemann, Oxford, 2006, pp. 39-70.

    Book  Google Scholar 

  17. R.P Smith: Acta Metal., 1953, vol. 1, pp. 578-87.

    Article  Google Scholar 

  18. G.G. Tibbetts: J. Appl. Phys., 1980, vol. 51, pp. 4813-16.

    Article  Google Scholar 

  19. M. Fáberová, R. Bureš, E. Dudrová: Powder Metall. Prog., 2009, vol. 9, pp. 212-18.

    Google Scholar 

  20. E.O. Hall: Proc. Phys. Soc. B., 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  21. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-32.

    Google Scholar 

  22. E. Lassner, W.D. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic/Plenum Publishers, New York, 1999.

    Book  Google Scholar 

  23. A.K. Dutta: Phys. Rev., 1953, vol. 90, pp. 187–92.

    Article  Google Scholar 

  24. C.N. Hooker, A.R. Ubbelohde, D.A.Young: Proc. Roy. Soc. A., 1965, vol. 284, pp. 17-31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea García-Junceda.

Additional information

Manuscript submitted February 16, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Junceda, A., Acebo, L. & Torralba, J.M. Study and Suppression of the Microstructural Anisotropy Generated During the Consolidation of a Carbonyl Iron Powder by Field-Assisted Hot Pressing. Metall Mater Trans A 46, 3192–3198 (2015). https://doi.org/10.1007/s11661-015-2919-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2919-z

Keywords

Navigation