Skip to main content
Log in

Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of the solute elements, copper, and niobium, on the different stages of de-vitrification or crystallization of two amorphous soft magnetic alloys, Fe73.5Si13.5B9Nb3Cu1, also referred to as FINEMET, and a Fe76.5Si13.5B9Cu1 alloy, a model composition without Nb, has been investigated in detail by coupling atom probe tomography and transmission electron microscopy. The effects of copper clustering and niobium pile-up at the propagating interface between the α-Fe3Si nanocrystals and the amorphous matrix, on the nucleation and growth kinetics have been addressed. The results demonstrate that while Cu clustering takes place in both alloys in the early stages, the added presence of Nb in FINEMET severely restricts the diffusivity of solute elements such as Cu, Si, and B. Therefore, the kinetics of solute partitioning and mobility of the nanocrystal/amorphous matrix interface is substantially slower in FINEMET as compared to the Fe76.5Si13.5B9Cu1 alloy. Consequently, the presence of Nb limits the growth rate of the α-Fe3Si nanocrystals in FINEMET and results in the activation of a larger no. of nucleation sites, leading to a substantially more refined microstructure as compared to the Fe76.5Si13.5B9Cu1 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Apply. Phys., 64 (1988), p. 6044-46.

    Article  Google Scholar 

  2. Y. Yoshizawa, K. Yamauchi, Mater. Trans. JIM, 21 (1990), p. 307-14.

    Article  Google Scholar 

  3. G. Herzer, IEEE Trans. Magn., 25 (1989), p. 3327-29.

    Article  Google Scholar 

  4. G. Herzer: IEEE Trans. Magn., 1990, vol. 26, pp. 1397–402.

    Article  Google Scholar 

  5. K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Acta mater., 47 (1999), p. 997-1006.

    Article  Google Scholar 

  6. M. Ohnuma, K. Hono, S. Linderoth, J.S. Person, Y. Yoshizawa, H. Onodera, Acta Mater., 48 (2000), p. 4783-90.

    Article  Google Scholar 

  7. K. Hono, J.L. Li, Y. Ueki, A. Inoue, T. Sakurai, Appl. Surf. Sci., 67 (1993), p. 398-406.

    Article  Google Scholar 

  8. K. Hono, Y. Zhang, A. Inoue, T. Sakurai, Mater. Trans. JIM, 86 (1995), p. 909-17.

    Article  Google Scholar 

  9. J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, H.N. Jones, Acta Mater., 46 (1998), p. 1861-74.

    Article  Google Scholar 

  10. J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, H.N. Jones, Nanostruct. Mater., 9 (1997), p. 391-96.

    Article  Google Scholar 

  11. A.R. Yavari, D. Negri, Nanostruct. Mater., 8 (1997), p. 969-86.

    Article  Google Scholar 

  12. A. Gupta, S.N. Kane, N. Bhagat, T. Kulik, J. Magn. Magn. Mater., 492 (2003), pp. 254-55.

    Google Scholar 

  13. H. Hermann, N. Mattern, S. Roth, P. Uebele, Phys. Rev. B, 56 (1997), p. 13888-97.

    Article  Google Scholar 

  14. Y.R. Zhang, R.V. Ramanujan, J. Mater. Sci., 41 (2006), pp. 5292-5301.

    Article  Google Scholar 

  15. Y.R. Zhang, R.V. Ramanujan, Intermetallics, 14 (2006), pp. 710-14.

    Article  Google Scholar 

  16. Y.R. Zhang, R.V. Ramanujan, Mater. Sci. Eng. A, 416 (2006), pp. 161-68.

    Article  Google Scholar 

  17. Y.R. Zhang, R.V. Ramanujan, J. Alloy. Compd., 403 (2005), pp. 197-205.

    Article  Google Scholar 

  18. R.V. Ramanujan and Y. Zhang: Appl. Phys. Lett., 2006, vol. 88, pp. 182506–182506-3.

    Article  Google Scholar 

  19. Y.M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, K. Hono, Acta Mater., 57 (2009), pp. 4463-72.

    Article  Google Scholar 

  20. T. Ohkubo, H. Kai, D.H. Ping, K. Hono, Y. Hirotsu, Scripta Mater., 44 (2001), pp. 971-76.

    Article  Google Scholar 

  21. Y.R. Zhang, R.V. Ramanujan, Thin Solid Films 505 (2006), pp. 97–102.

    Article  Google Scholar 

  22. Cantor, B., and R.W. Cahn, 1983, in Amorphous Metallic Alloys, edited by F.E. Luborsky (Butterworth, London), p. 487.

    Chapter  Google Scholar 

  23. Dorner, W., and H. Mehrer, 1991, Phys. Rev. B 44, 101.

    Article  Google Scholar 

  24. J. Horváth: in Diffusion in Solid Metals and Alloys, Landolt-Bornstein, New Series, Group III, H. Mehrer, eds., Springer, Berlin, 1990, vol. 26, p. 437.

  25. Horvath, J., K. Pfahler, W. Ulfert, W. Frank, and H. Mehrer, 1985, J. Phys.(Paris) 46, C8–645.

    Article  Google Scholar 

Download references

Acknowledgments

The research of RVR is conducted by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise (CREATE) that is supported by the National Research Foundation, Prime Minister’s Office, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Banerjee.

Additional information

Manuscript submitted September 16, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C., Katakam, S., Nag, S. et al. Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys. Metall Mater Trans A 45, 2998–3009 (2014). https://doi.org/10.1007/s11661-014-2239-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2239-8

Keywords

Navigation