Skip to main content
Log in

Effects of Start and Finish Cooling Temperatures on Microstructure and Mechanical Properties of Low-Carbon High-Strength and Low-Yield Ratio Bainitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of start and finish cooling temperatures on microstructure and mechanical properties of low-carbon high-strength and low-yield ratio bainitic steels were investigated in this study. Four kinds of low-carbon high-strength and low-yield ratio bainitic steels were fabricated by varying the start and finish cooling temperatures and cooling rates, and their microstructure and mechanical properties such as tensile and Charpy impact properties were measured. In the steels cooled down from the high start cooling temperature above Ar1 [978 K (705 °C)], the volume fraction of acicular ferrite is lower than in the steels cooled down from the low start cooling temperature below Ar1 [978 K (705 °C)]. The finish cooling temperatures and cooling rates affect the formation of bainitic ferrite, granular bainite, and martensite–austenite (MA) constituents. According to the correlation between microstructure and mechanical properties, the tensile strength increases with increasing the volume fractions of bainitic ferrite and MA constituents, whereas the elongation decreases. The yield ratio decreases as the volume fraction of MA constituents increases. Charpy impact absorbed energy is proportional to the volume fraction of acicular ferrite, and is inversely proportional to the volume fraction of granular bainite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, Japan, 1992, pp. 1-100.

    Google Scholar 

  2. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore Polar Eng. Conf., Honolulu, Hawaii, 2003, pp. 10–18.

  3. J.E. Hood: Int. J. Pres. Ves. Pip., 1974, vol. 2, pp. 165-78.

    Article  Google Scholar 

  4. S. Kim, J.S. Seo, and C. Lee: Met. Mater. Int., 2012, vol. 18, pp. 1029-36.

    Article  Google Scholar 

  5. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-strength Low-alloy Steels, Butterworth & Co., Ltd., London, UK, 1988, pp. 80-100.

    Book  Google Scholar 

  6. H.K.D.H. Bhadeshia: Mater. Sci. Eng., 2004, vol. A378, pp. 34-39.

    Article  Google Scholar 

  7. S. I. Kim and Y. Lee: Met. Mater. Int., 2012, vol. 18, pp. 735-44.

    Article  Google Scholar 

  8. R. Denys: Pipeline Technol. Conf., Elsevier, Amsterdam, 2000, vol. 1, II, pp. 1–116.

  9. US Patent Pub., 2007, No. 20070193666.

  10. T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi: Proc. Nineteenth Int. Offshore Polar Eng. Conf., Vancouver, 2009, pp. 73–79.

  11. D.B. Lillig: Proc. Eighteenth Int. Offshore Polar Eng. Conf., Vancouver, 2008, pp. 1–12.

  12. J. Hu, L.-X. Du, J.-J. Wang, C.-R. Gao, T.-Z. Yang, A.-Y. Wang, and R.D.K. Misra: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4937–47.

    Article  Google Scholar 

  13. V. Colla, M. Desanctis, A. Dimatteo, G. Lovicu, and R. Valentini: Metall. Mater. Trans. A, 2011, vol. 41A, pp. 2781-93.

    Article  Google Scholar 

  14. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. 15th Conf. Mech Behav. Mater., Seoul,, 2001, pp. 177–86.

  15. N.J. Kim, A.J. Yang, and G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 471-74.

    Article  Google Scholar 

  16. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505-16.

    Article  Google Scholar 

  17. C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Tech., 2004, vol. 21, pp. 814-18.

    Article  Google Scholar 

  18. C.H. Lee, H.K.D.H. Bhadeshia, and H.-C. Lee: Mater. Sci. Eng., 2003, vol. A360, pp. 249-57.

    Article  Google Scholar 

  19. G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937-45.

    Article  Google Scholar 

  20. F.S. LePera: Metallography, 1979, vol. 12, pp. 263-68.

    Article  Google Scholar 

  21. Y. Ohomori, H. Ohtani, and T. Kunitake: Met. Sci., 1974, vol. 8, pp. 357-66.

    Article  Google Scholar 

  22. W. Oldfield: Curve fitting impact test data - a statistical procedure, ASTM Standardization News, West Conshohocken, PA, USA, 1975, pp. 24-29.

    Google Scholar 

  23. J.S. Kirkaldy and D. Venugopalan: Phase Transformation in Ferrous Alloys, AIME, Warrendale, PA, 1984, pp. 125-48.

    Google Scholar 

  24. K.W. Andrew: JISI, 1965, vol. 203, pp. 721-27.

    Google Scholar 

  25. C.Y. Kung and J.J. Raymond: Metall. Trans. A, 1982, vol. 13A, pp. 328-31.

    Article  Google Scholar 

  26. T. Hayashi, F. Kawabata, and K. Amano: Proc. Mater. Solution’97 Accel. Cool./Direct Quenching Steels, Indianapolis, IN, 1997, pp. 93–99.

  27. R.A. Farrar and P.L. Harrison: J. Mater. Sci., 1987, vol. 22, pp. 3812-20.

    Article  Google Scholar 

  28. S.-G. Park, K.-H. Lee, K.-D. Min, M.-C. Kim, and B.-S. Lee: Met. Mater. Int., 2013, vol. 19, pp. 49-54.

    Article  Google Scholar 

  29. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Met. Mater. Int., 2006, vol. 12, pp. 131-35.

    Article  Google Scholar 

  30. J. Mola and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 946-67.

    Article  Google Scholar 

  31. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. of 15th Conf. Mech. Behav. Mater., Seoul, 2001, pp. 177–86.

  32. H.W. Swift: J. Mech. Phys Solids, 1952, vol. 1, pp. 1–16.

    Article  Google Scholar 

  33. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268-90.

    Google Scholar 

  34. Y.M. Kim, S.K. Kim, and N.J. Kim: Mater. Sci. Forum, 2005, vol. 475–479, pp. 282-92.

    Google Scholar 

  35. F.B. Pickering and T. Gladman: ISI Spec. Rep., 1961, vol. 81, pp. 10-20.

    Google Scholar 

  36. B. Hwang, C.G. Lee, and S.-J. Kim: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 717-28.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Knowledge Economy under a Grant No. 100400-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yong Shin.

Additional information

Manuscript submitted February 5, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, H.K., Lee, S. & Shin, S.Y. Effects of Start and Finish Cooling Temperatures on Microstructure and Mechanical Properties of Low-Carbon High-Strength and Low-Yield Ratio Bainitic Steels. Metall Mater Trans A 45, 2004–2013 (2014). https://doi.org/10.1007/s11661-013-2156-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2156-2

Keywords

Navigation