Skip to main content

Advertisement

Log in

Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With the intention of improving the mechanical properties of Ti-6Al-4V, samples were first coated with pure titanium using the physical vapor deposition (PVD) magnetron sputtering technique. The Taguchi optimization method was used to attain a higher coating on substrate adhesion. Second, pure titanium-coated samples with higher adhesion were anodized to generate TiO2 nanotubes. Next, the TiO2-coated specimens were heat treated at annealing temperatures of 753.15 K and 923.15 K (480 °C and 650 °C). The XRD results indicate that the varying heat treatment temperatures produced different phases, namely, anatase [753.15 K (480 °C)] and rutile [923.15 K (650 °C)]. Finally, the coated samples’ mechanical properties (surface hardness, adhesion, and fretting fatigue life) were investigated. The fretting fatigue lives of TiO2-coated specimens at 753.15 K and 923.15 K (480 °C and 650 °C) annealing temperatures were significantly enhanced compared to uncoated samples at low and high cyclic fatigue. The results also indicate that TiO2-coated samples heat treated at an annealing temperature of 753.15 K (480 °C) (anatase phase) are more suitable for increasing fretting fatigue life at high cyclic fatigue (HCF), while at low cyclic fatigue, the annealing temperature of 923.15 K (650 °C) seemed to be more appropriate. The fretting fatigue life enhancement of thin-film TiO2 nanotubular array-coated Ti-6Al-4V is due to the ceramic nature of TiO2 which produces a hard surface as well as a lower coefficient of friction of the TiO2 nanotube surface that decreases the fretting between contacting components, namely, the sample and friction pad surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Niinomi, Metall. Mater. Trans A, 32A (2001) pp. 477-86.

    Google Scholar 

  2. M. Niinomi, Mater. Trans., Vol. 49, No. 10 (2008) pp. 2170-78.

    Article  Google Scholar 

  3. M. Niinomi: Biomaterials, 24 (2003) 2673–83.

    Article  Google Scholar 

  4. A.P. Tomsia, E. Saiz, J. Song, C.R. Bertozzi, Adv. Eng. Mater. 7(11) (2005) 999–1004.

    Article  Google Scholar 

  5. G.B. de Souza, G.G. de Lima, N.K. Kuromoto, P. Soares, C.M. Lepienski, C.E. Foerster, A. Mikowski, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 796–806.

    Article  Google Scholar 

  6. G.B. de Souza, C.M. Lepienski, C.E. Foerster, N.K. Kuromoto, P. Soares, H.A. Ponte, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 756–65.

    Article  Google Scholar 

  7. S.J. Ding, C.P. Ju, J.H.C. Lin, J. Biomed. Mater. Res. A 47/4 (1999) 551–63.

    Article  Google Scholar 

  8. D.M. Ebenstein, L.A. Pruitt, Nano Today 1/3 (2006) 26–33.

    Article  Google Scholar 

  9. X. Fan, Y. Zhang, P. Xiao, F. Hu, H. Zhang, J. Chem. Phys. 20 (2007) 753–58.

    Google Scholar 

  10. M. Farooq, Z.H. Lee, J. Korean Phys. Soc. 40/3 (2002) 511–15.

    Google Scholar 

  11. S. Gangopadhyay, R. Acharya, A.K. Chattopadhyay, S. Paul, Vacuum 84/6 (2010) 843–50.

    Article  Google Scholar 

  12. A. Kar, K. Raja, M. Misra, Surf. Coat. Technol. 201/6 (2006) 3723–31.

    Article  Google Scholar 

  13. P. Kelly, R. Arnell, Vacuum 56/3 (2000) 159–72.

    Article  Google Scholar 

  14. A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono, P. Schmuki, Acta Biomater. 5/6 (2009) 2322–30.

    Article  Google Scholar 

  15. K.S. Lee, I.S. Park, Scripta Mater. 48/6 (2003) 659–63.

    Article  Google Scholar 

  16. S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, Ahmed A.D. Sarhan, Y. Alias (2013) J. Mech. Behav. Biomed. 20, 272–82.

    Article  Google Scholar 

  17. T. Sultana, G.L. Georgiev, R.J. Baird, G.W. Auner, G. Newaz, R. Patwa, H.J. Herfurth, J. Mech. Behav. Biomed. 2 (2009) 237–42.

    Article  Google Scholar 

  18. S. Li, J. Yin, G. Zhang, Sci. China 53/5 (2010) 1068–73.

    Google Scholar 

  19. S.Q. Liu, Bioregenerative Engineering: Principles and Applications, Wiley, Hoboken, NJ, (2007).

    Book  Google Scholar 

  20. J. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, J. Electroanal. Chem. 621/2 (2008) 254–66.

    Article  Google Scholar 

  21. M. Mayo, R. Siegel, A. Narayanasamy, W. Nix, J. Mater. Res. 5/05 (1990) 1073–82.

    Article  Google Scholar 

  22. V. Nelea, C. Morosanu, M. Iliescu, I. Mihailescu, Surf. Coat. Technol. 173/2 (2003) 315–22.

    Article  Google Scholar 

  23. J.M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki: Electrochem. Commun., 2005, vol. 7 (11), pp. 1133–37.

  24. M. Metikoš-Hukovič, A. Kwokal, and J. Piljac: Biomaterials, 2003, vol. 24, pp. 3765–75.

  25. ISO Standard: Metallic Materials—Rotating Bar Bending Fatigue Testing, ISO International, 2010.

  26. J.A. Ghani, I.A. Choudhury, H.H. Hassan, J. Mater. Process. Technol. 145/1 (2004) 84–92.

    Article  Google Scholar 

  27. J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, I. Sopyan, J. Mech. Behav. Biomed. Mater. 3/4 (2010) 324–30.

    Article  Google Scholar 

  28. K. Singh, N. Krishnamurthy, A.K. Suri, Tribol. Int. 50/0 (2012) 16–25.

    Article  Google Scholar 

  29. G. Crawford, N. Chawla, J. Houston, J. Mech. Behav. Biomed. Mater. 2/6 (2009) 580–87.

    Article  Google Scholar 

  30. Z. Hashin, B.W. Rosen, J. Appl. Mech., 31 (1964), pp. 223–32.

    Article  Google Scholar 

  31. Y. Al-Khatatbeh, K.K. M. Lee, B. Kiefer, J. Phys. Chem. C. 116 (2012) 21635–39.

    Article  Google Scholar 

  32. W.Y. Chang, T.H. Fang, Z.W. Chiu, Y.J. Hsiao, L.W. Ji, Microporous Mesoporous Mater. 145/1 (2011) 87–92.

    Article  Google Scholar 

  33. A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri, K. Koumoto (2008) J. Mater. Sci. 43(17), 5924–29.

    Article  Google Scholar 

  34. M.R. VanLandingham, J. Res. Natl Inst. Stand. Technol. 108/4 (2003) 249–65.

    Article  Google Scholar 

  35. T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, ACS Nano 3/10 (2009) 3098–3102.

    Article  Google Scholar 

  36. B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S.V. Joshi, G. Sundararajan (2008) Surf. Coat. Technol. 202(8) 1462–69.

    Article  Google Scholar 

  37. Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C. 115 (2011), 12844–49.

    Article  Google Scholar 

  38. G. Majzoobi, M. Jaleh, Mater. Sci. Eng. A 452 (2007) 673–81.

    Article  Google Scholar 

  39. X. Zhang, D. Liu, Trans. Nonferrous Mater. Soc. China 19/3 (2009) 557.

    Article  Google Scholar 

  40. L. Pazos, P. Corengia, H. Svoboda, J. Mech. Behav. Biomed. Mater. 3/6 (2010) 416–24.

    Article  Google Scholar 

  41. E. Zalnezhad, A.A.D. Sarhan, M. Hamdi (2012) Int. J. Precision Eng. Manuf. 13, 1453–59.

    Article  Google Scholar 

  42. A. Vadiraj, M. Kamaraj, Tribol. Int. 40/1 (2007) 82–88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support under the Research Grant with No.: UM. TNC2/IPPP/UPGP/261/15 (BK030-2013) from the University of Malaya, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Zalnezhad.

Additional information

Manuscript submitted April 10, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalnezhad, E., Baradaran, S., Bushroa, A.R. et al. Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application. Metall Mater Trans A 45, 785–797 (2014). https://doi.org/10.1007/s11661-013-2043-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2043-x

Keywords

Navigation