Skip to main content

Advertisement

Log in

Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young’s modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young’s modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R. K. Nanstad, D. A. McClintock, D. T. Hoelzer, L. Tan, T. R. Allen J. Nucl. Mater., 2009, vol. 392, pp.331-40.

    Article  CAS  Google Scholar 

  2. S. Ohtuska, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Mater. Trans. A, 2005, vol. 46, pp. 487-92.

    Article  Google Scholar 

  3. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S.Hagi, T. Kobayashi, J. Nucl. Mater., 2000, vol. 283–87, pp.702-06.

    Article  Google Scholar 

  4. M. K. Miller, D. T. Hoelzer, E. A. Kenik, K. F. Russell, Intermetallics, 2005, vol.13, pp. 387-92.

    Article  CAS  Google Scholar 

  5. R. W. Evans, J. Presto, B. Wilshire, E. A. Little, J. Nucl. Mater. 1992, vol. 195, pp. 24.

    Article  CAS  Google Scholar 

  6. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S.Shikakura, K. Asabe, T. Nishida, M. Fujiwara, J. Nucl.Mater. 1993, vol. 204, pp. 65-73.

    Article  CAS  Google Scholar 

  7. C. Zankine, C. Prioul, D. Francois, Mater. Sci. Eng. A. 1996, vol. 219, p. 102.

    Article  Google Scholar 

  8. D. K. Mukhopadhyay, F.H. Froes, D.S. Gelles, J. Nucl.Mater. 1998, vol. 258–63, pp. 1209-15.

    Article  Google Scholar 

  9. S. Ukai, T. Nishida, T. Okuda, T. Yoshitake, J. Nucl. Mater. 1998, vol. 258–63, pp. 1745-49.

    Article  Google Scholar 

  10. I. S. Kim, J. D. Hunn, N. Hashimoto, D. L. Larson, P. J.Maziasz, K. Miyahara, E. H. Lee, J. Nucl. Mater. 2000, vol. 280, pp. 264-74.

    Article  CAS  Google Scholar 

  11. C. Capdevila, Y. L. Chen, N. C. Krieger Lassen, A. R. Jones and H.K. D. H. Bhadeshia: ISIJ International, 2003, vol. 43, pp. 777–83.

    Article  CAS  Google Scholar 

  12. C.P. Jongenburger and R. F. Singer: in Proc. Conf. New Materials by Mechanical Alloying Techniques, E. Arzt and L. Schultz, eds., Calw-Hirsau, DGM Verlag, Oberursel, 1988, p. 157.

  13. K. Murakami, H. Harada and H.K.D.H Bhadeshia: in Proceedings of Heat Treatment ‘92, I. Tamura, ed., Kyoto, 1992, pp. 269–72.

  14. T.S. Chou, H.K.D.H Bhadeshia, G. McColvin and I.C. Elliott: in Mechanical Alloying for Structural Applications, Proceedings of the 2nd International Conference on Structural Applications of Mechanical Alloying, Vancouver, British Columbia, Canada, ASM, Materials Park, OH, 1993, pp. 77–82.

  15. J. Q. Guo, K. Kita, N. S. Kazama, J. Nagahora, K. Ohtera, Mater. Sci. Eng. A, 1995, vol. 203, pp. 420–26.

    Google Scholar 

  16. K. I. Moon, K. S. Lee, J. Alloy Compd., 1999, vol.291, pp.312–21.

    Article  CAS  Google Scholar 

  17. S. J. Hong, B. S. Chum, Mater. Sci. Eng. A., 2003, vol. 348, pp. 262–70.

    Article  Google Scholar 

  18. O. N. Senkov, S. V. Senkova, J. M. Scott, D.B. Miracle, Mater. Sci. Eng. A, 2005, vol. 393, pp.12–21.

    Article  Google Scholar 

  19. S. Z. Han, M. Goto, C. Lim, C. J. Kim, S. Kim, J. Alloy Compd., 2007, vol. 434-35, pp. 304-6.

    Article  Google Scholar 

  20. S. Bera, Z. Zuberova, R.J. Helling, Y. Estrin, I. Manna, Philos. Mag., 2010, vol. 90, pp. 1465-83.

    Article  CAS  Google Scholar 

  21. Y. Kawamura, H. Mano, A. Inoue, Scripta Mater., 2001, vol.44, pp. 1599–1604.

    Article  CAS  Google Scholar 

  22. I. Borner, J. Eckert, Scripta Mater., 2001, vol. 45, pp. 237–44.

    Article  CAS  Google Scholar 

  23. A. R. Yavari, W.J. Botta-Filho, C.A.D. Rodrigues, C. Cardoso, R.Z. Valiev, Scripta Mater., 2002, vol.46, pp. 711–16.

    Article  CAS  Google Scholar 

  24. V. M. Segal, Mater. Sci. Eng. A, 2002, vol. 338, pp. 331–44.

    Article  Google Scholar 

  25. W. Pachla, M.Kulczyk, M. Sus-Ryszkowska, A. Mazur and K. J. Kurzydlowski, J. Mater. Proce. Tech., 2008, vol. 205, pp. 173-82.

    Article  CAS  Google Scholar 

  26. S. Bera, W. Lojkowsky, I. Manna, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3276-83.

    Article  CAS  Google Scholar 

  27. D. Roy, R. Mitra, T. Chudoba, Z. Witczak, W. Lojkowski and I. Manna, Mater. Sci. Eng. A, 2008, vol. 497, pp. 93–100.

    Article  Google Scholar 

  28. S. K. Karak, C.S.Vishnu, Z. Witczak, W. Lojkowski, J. Dutta Majumdar and I. Manna, Wear, 2010, vol.270, pp.5-11.

    Article  CAS  Google Scholar 

  29. S. K. Karak, T. Chudoba, Z. Witczak, W. Lojkowski and I. Manna, Mater. Sci.Engg A., 2011, vol.528,pp.7475-83.

    Article  CAS  Google Scholar 

  30. S. K. Karak, J. Dutta Majumdar, W. Lojkowski, A. Michalski, L. Ciupinski, K. J. Kurzydlowski and I.Manna, Philos.Mag., 2012, vol.92, pp.516-34.

    Article  CAS  Google Scholar 

  31. A. Presz, M. Sikibska, M. Pilecki, Powd. Hand. & Proc., 1995, vol. 7, pp. 321-25.

    Google Scholar 

  32. K. Nihara, R. Morena, and D.P.H. Hasselman: in Brittle Matrix Composites 2, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, eds., Elsevier Applied Science, New York, 1983, pp. 84–97.

  33. Z. Witczak, Mater Sci Eng. A., 1997, vol. 239, pp. 206-12.

    Article  Google Scholar 

  34. T. H. Keijser, I. L. Langford, E. J. Mittemeijer, B. P. Vogel, J. Appli. Crystallogr., 1982, vol. 15, pp. 308-14.

    Article  Google Scholar 

  35. D.A. Porter, and E.K. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Co. Ltd, New York, NY, 1981, pp. 44–47.

  36. L. F. He, J. Shirahata, T. Nakayma, T. Suzuki, H. Suematsu, I. Ihara, Y. W. Bao, T. Komastu and K. Niihara, Scripta Materialia, 2011, vol.64, pp.548-51.

    Article  CAS  Google Scholar 

  37. D. Roy, D. Chakravarty, R. Mitra, I. Manna, J. Alloy Compd., 2008, vol. 460, pp. 320–25.

    Article  CAS  Google Scholar 

  38. M. Xie, D. Luo, X.-B. Xian, B. Leng, C. Chen, and W. Lu: Fusion Eng. Des., 2010, vol. 85, pp. 964–68.

  39. F. Z. Yang, J. Zhao, X. Ai, J. Mater. Proc. Tech., 2009, vol.209, pp. 4531–36.

    Article  CAS  Google Scholar 

  40. Y. Zhao, M. Wang, J. Mater. Proc. Tech., 2009, vol. 209, pp. 355–59.

    Article  CAS  Google Scholar 

  41. M. Ardestani, H.R. Rezaie, H. Arabi, H. Razavizadeh, J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 862–67.

    Article  CAS  Google Scholar 

  42. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp.103–14.

  43. X. D. He, Y. Xin, M. W. Li, Y. Sun, J. Alloy Compd., 2009, vol. 467, pp.347–50.

    Article  CAS  Google Scholar 

  44. Z. Zhaohui, W. Fuchi, Inter. J. Refractory Metals and Hard Mater., 19 (2001) 177-182.

    Article  Google Scholar 

  45. K.H. Lee, S.I. Cha, H.J. Ryub, M.F. Dilmore, and S.H. Honga: J. Alloy Compd., 2007, vol. 434–35, pp. 433–36.

  46. C.H. Caceres, D.M. Rovera, J. Light Metals., 2001, vol.1, pp. 151–56.

    Article  Google Scholar 

  47. C.H. Caceres, A. Blake, Phys. Status Solidi A., 2002, vol. 194, pp.147–58.

    Article  CAS  Google Scholar 

  48. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P.M. Sarosi, M. Heilmaier, D. Sturm, Scripta Mater. 2009, vol. 61, pp. 793-96.

    Article  CAS  Google Scholar 

  49. J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, T. Shanmugasundaram, Acta Mater. 2011, vol. 59, pp. 1300-08.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (I.M.) gratefully acknowledges partial financial support from the Indian National Academy of Engineering (Project: VVC), Department of Science and Technology (J C Bose Fellowship) and Council of Scientific and Industrial Research (OLP280 at CSIR-CGCRI). We thankful to Dr. Witold Zielinski, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland, for conducting microstructure characterization under transmission electron microscope JEM 1200 (JEOL, 200 kV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Manna.

Additional information

Manuscript submitted July 1, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karak, S.K., Dutta Majumdar, J., Witczak, Z. et al. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering. Metall Mater Trans A 44, 2884–2894 (2013). https://doi.org/10.1007/s11661-013-1627-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1627-9

Keywords

Navigation