Skip to main content
Log in

Topologically Close-Packed μ Phase Precipitation in Creep-Exposed Inconel 617 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two creep-exposed Inconel 617 alloy samples [923 K (650 °C) for 45,000 hours and 973 K (700 °C) for 4000 hours] have been studied using analytical electron microscopy and X-ray diffraction techniques. The thermodynamically predicted equilibrium phases in Inconel 617 alloy were compared with the phases observed which are molybdenum-enriched, topologically close-packed μ-phase, along with precipitates of gamma-prime (γ′), M23C6 and Ti(C,N). The μ-phase precipitates were in the size range 60 to 500 nm (with some larger agglomerates); they were situated both within the grains, along twin and grain boundaries, and near intra- and intergranular carbides. The stacking faults in the μ-phase were observed in high magnification electron microscopy. The precipitation of the μ-phase in these samples is significant for the potential use of this alloy in future generation steam power plants as the appearance of the μ-phase is associated with an increased tendency for cracks and voids to initiate. The μ-phase has not been previously identified in the literature relating to creep or thermal exposure of Inconel 617 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Hosier and D.J. Tillack: Met. Eng. Q., 1972, vol. 12 (3), pp. 51–55.

    CAS  Google Scholar 

  2. W.L. Mankins, J.C. Hosier, and T.H. Bassford: Metall. Mater. Trans. B, 1974, vol. 5, pp. 2579–90.

    Google Scholar 

  3. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp. 158–65.

    Book  Google Scholar 

  4. C.M.F. Rae and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–25.

    Article  CAS  Google Scholar 

  5. C.T. Sims: in Superalloys II, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Wiley, New York, 1987, pp. 217–40.

  6. M. Simonetti and P. Caron: Mater. Sci. Eng. A, 1998, vol. 254, pp. 1–12.

    Article  Google Scholar 

  7. X.Z. Qin, J.T. Guo, C. Yuan, G.X. Yang, L.Z. Zhou, and H.Q. Ye: J. Mater. Sci., 2009, vol. 44, pp. 4840–47.

    Article  CAS  Google Scholar 

  8. J.-C. Zhao and M.F. Henry: Adv. Eng. Mater., 2002, vol. 4 (7), pp. 501–08.

    Article  CAS  Google Scholar 

  9. H.M. Tawancy: J. Mater. Sci., 1996, vol. 31, pp. 3929–36.

    Article  CAS  Google Scholar 

  10. N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and Y. Yamamoto: Mater. Sci. Eng. A, 2008, vol. 498 (1–2), pp. 412–20.

    Google Scholar 

  11. J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu: Scripta Mater., 2006, vol. 55 (4), pp. 331–34.

    Article  CAS  Google Scholar 

  12. K. Zhao, L.H. Lou, Y. Wen, H. Li, and Z.Q. Hu: J. Mater. Sci., 2004, vol. 39 (1), pp. 369–71.

    Article  CAS  Google Scholar 

  13. M.S.A. Karunaratne, C.M.F. Rae, and R.C. Reed: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2409–21.

    Article  CAS  Google Scholar 

  14. R.C. Reed, M.P. Jackson, and Y.S. Na: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 521–33.

    Article  CAS  Google Scholar 

  15. M. Raghavan, R.R. Mueller, G.A. Vaughn, and S. Floreen: Metall. Trans. A, 1984, vol. 15A, pp. 783–92.

    CAS  Google Scholar 

  16. H. Kirchhöfer, F. Schubert, and H. Nickel: Nucl. Technol., 1984, vol. 66 (1), pp. 139–48.

    Google Scholar 

  17. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2569–85.

    Article  CAS  Google Scholar 

  18. R. Krishna, S.V. Hainsworth, H.V. Atkinson, and A. Strang: Mater. Sci. Technol., 2010, vol. 26 (7), pp. 797–802.

    Article  CAS  Google Scholar 

  19. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.-P. Schillé: in Superalloys 2004, K.A. Green, T.M. Pollock, and H. Harada, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 849–58.

  20. Y. Hosoi and S. Abe: Metall. Trans. A, 1975, vol. 6A, pp. 1171–78.

    CAS  Google Scholar 

  21. O.F. Kimball, G.Y. Lai, and G.H. Reynolds: Metall. Trans. A, 1976, vol. 7A, pp. 1951–52.

    CAS  Google Scholar 

  22. T. Takahashi, J. Fujiwara, T. Matsushima, M. Kiyokawa, I. Morimoto, and T. Watanabe: Trans. ISIJ, 1978, vol. 18, pp. 221–24.

    CAS  Google Scholar 

  23. S. Kihara, J.B. Newkirk, A. Ohtomo, and Y. Saiga: Metall. Trans. A, 1980, vol. 11A, pp. 1019–31.

    CAS  Google Scholar 

  24. E. Gariboldi, M. Cabibbo, S. Spigarelli, and D. Ripamonti: Int. J. Press. Vessels Pip., 2008, vol. 85, pp. 63–71.

    Article  CAS  Google Scholar 

  25. K. Schneider, W. Hartnagel, P. Schepp, and B. Ilschner: Nucl. Technol., 1984, vol. 66 (2), pp. 289–95.

    CAS  Google Scholar 

  26. G.N. Maniar and A. Szirmae, eds.: Manual on Electron Metallography Techniques, ASTM Special Technical Publication 547, American Society for Testing and Materials, Philadelphia, PA, 1973, pp. 3–24.

  27. K.C. Thompson-Russell and J.W. Edington: Electron Microscope Specimen Preparation Techniques in Materials Science, vol. 5, Philips Technical Library, Monographs in Practical Electron Microscopy in Materials Science, Macmillan Publishers Ltd, London, 1977.

  28. K.R. Vishwakarma, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng A, 2008, vol. 480 (1–2), pp. 517–28.

    Google Scholar 

  29. W. Betteridge and J. Heslop, eds.: The Nimonic Alloys and Other Nickel-Base High-Temperature Alloys, Edward Arnold (Publishers) Ltd., London, 1959, pp. 71–72.

  30. R. Krishna, S.V. Hainsworth, S.P.A. Gill, A. Strang, and H.V. Atkinson: Proc. 2nd Int. ECCC Conf. on ‘Creep & Fracture in High Temperature ComponentsDesign & Life Assessment’, I.A. Shibli and S.R. Holdsworth, eds., 21–23 April 2009, Zurich, pp. 764–76.

  31. Thermo-Calc Software AB (Version 4), http://www.thermocalc.com, Stockholm, Sweden, August 2006.

  32. P.J. Ennis, K.P. Mohr, and H. Schuster: Nucl. Technol., 1984, vol. 66 (2), pp. 363–68.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank ALSTOM Power Ltd. for supplying creep-exposed Inconel 617 alloys and wish to thank the UK Government’s Technology Strategy Board for providing financial support to carry out this work. Mr G. Clark is thanked for help with microscopy and Mr T Forryan is thanked for preparing samples for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Atkinson.

Additional information

Manuscript submitted October 31, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, R., Hainsworth, S.V., Gill, S.P.A. et al. Topologically Close-Packed μ Phase Precipitation in Creep-Exposed Inconel 617 Alloy. Metall Mater Trans A 44, 1419–1429 (2013). https://doi.org/10.1007/s11661-012-1491-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1491-z

Keywords

Navigation