Skip to main content
Log in

Austenite Grain Structures in Ti- and Nb-Containing High-Strength Low-Alloy Steel During Slab Reheating

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenite-grain growth was investigated in a couple of microalloyed steels, one containing Ti and the other containing Nb, Ti, and V, using different reheating temperatures between 1273 K and 1523 K (1000 °C and 1250 °C). Nature and distribution of microalloy precipitates were quantitatively analyzed before and after reheating. Interdendritic segregation (or microsegregation) during casting can result in an inhomogeneous distribution of microalloy precipitates in the as-cast slabs, which can create austenite grain size variation (even grain size bimodality) after reheating. Ti addition reduced the grain size variation; however, it could not eliminate the grain size bimodality in Nb-containing steel, due to the differential pinning effect of Nb precipitates. A model was proposed for the prediction of austenite grain size variation in reheated steel by combining different models on microsegregation during solidification, thermodynamic stability, and dissolution of microalloy precipitates and austenite grain growth during reheating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. CAMECA is a registered trademark of Science and Metrology Solutions, Gennevilliers Cedex, France.

  3. THERMO-CALC is a registered trademark of Thermo-Calc Software AB, Stockholm, Sweden.

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, Book 615, pp. 230–60.

  2. G. Tither: Proc. 2nd Int. Conf. on ‘HSLA Steels: Processing, Properties and Applications,’ Baijing, China, 1990, G. Tither, S. Zhang, and J.S.X.H. Zhongguo, eds., TMS, Warrendale, PA, 1992, pp. 61–80.

  3. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Stanley Thornes Ltd., Cheltenham, 2000, pp. 139–242.

    Google Scholar 

  4. T. Gladman: Proc. R. Soc., Lond., 1966, vol. 294, pp. 298–309.

    Article  CAS  Google Scholar 

  5. L.J. Cuddy and J.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989–95.

    CAS  Google Scholar 

  6. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86.

    Article  CAS  Google Scholar 

  7. D. Chakrabarti, C. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.

    Article  CAS  Google Scholar 

  8. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 8939–46.

    Article  Google Scholar 

  9. A. Kundu, C.L. Davis, and M. Strengwood: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 994–1001.

    Article  CAS  Google Scholar 

  10. D. Chakrabarti, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 780–95.

    Article  CAS  Google Scholar 

  11. S.J. Wu and C.L. Davis: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 456–60.

    Google Scholar 

  12. J.H. Chen, L. Zhu, and H. Ma: Acta Metall. Mater., 1990, vol. 38, pp. 2527–35.

    Article  CAS  Google Scholar 

  13. C.L. Davis and M. Strangwood: J. Mater. Sci., 2002, vol. 37, pp. 1083–90.

    Article  CAS  Google Scholar 

  14. C. Zener: quoted by C.S. Smith, Trans. TMS-AIME, 1948, vol. 175, pp. 15–51.

  15. E. Nes, N. Ryum, and O. Hunder: Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  16. J.C. Bruno and P.R. Rios: Scripta Metall., 1995, vol. 32, pp. 601–06.

    Article  CAS  Google Scholar 

  17. R. Elst, J.V. Humbeeck, and I. Delaey: Acta Metall., 1988, vol. 36, pp. 1723–29.

    Article  CAS  Google Scholar 

  18. D. Chakrabarti: Ph.D. Thesis, University of Birmingham, Birmingham, United Kingdom, 2007, pp. 257–74.

  19. S. Suzuki, G.C. Weatherly, and D.C. Houghton: Acta Metall., 1987, vol. 35, pp. 341–52.

    Article  CAS  Google Scholar 

  20. K.A. Alogab, D.K. Matlock, J.G. Speer, and H.J. Kleebe: ISIJ Int., 2007, vol. 47, pp. 307–16.

    Article  CAS  Google Scholar 

  21. J. Moon, S. Kim, J. Lee, and C. Lee: Metall. Mater. Trans A, 2007, vol. 38A, pp. 2788–95.

    Article  CAS  Google Scholar 

  22. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58 (5), pp. 423–38.

    Article  CAS  Google Scholar 

  23. S. Roy, S. Patra, S. Neogi, A. Laik, S.K. Chowdhuri, and D. Chakrabarti: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1845–60.

    Article  Google Scholar 

  24. B. Mintz, W.B. Morrison, and R.C. Cochrane: Proc. Conf. on Advances in the Physical Metallurgy and Applications of Steels, Metals Society, Liverpool, London, 1982, Book 284, pp. 222–28.

  25. N. Gao and T.N. Baker: ISIJ Int., 1988, vol. 38, pp. 744–51.

    Article  Google Scholar 

  26. A. Ruiz-Aparicio: Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, 2004, pp. 76–126.

  27. J.M. Cabrera, A. Al Omar, and J.M. Prado: J. Mater. Sci., 1996, vol. 31, pp. 1303–09.

    Article  CAS  Google Scholar 

  28. J. Fernandez, S. Illescas, and J.M. Guilemany: Mater. Lett., 2007, vol. 61, pp. 2389–92.

    Article  CAS  Google Scholar 

  29. J. Moon, C. Lee, S. Uhm, and S. Lee: Acta Metall., 2006, vol. 54, pp. 1053–61.

    CAS  Google Scholar 

  30. Y.M. Won and B.G. Thomas: Metall. Mater. Trans A, 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  31. S.K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.

    Article  CAS  Google Scholar 

  32. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  33. J. Kunze, C. Mickel, M. Leonhardt, and S. Oswald: Steel Res., 1997, vol. 68, pp. 403–08.

    CAS  Google Scholar 

  34. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, pp. 290–95.

    Google Scholar 

  35. R.M. Poths, R.L. Higginson, and E.J. Palmiere: Scripta Mater., 2001, vol. 44, pp. 147–51.

    Article  CAS  Google Scholar 

  36. K. Banerjee, M. Militzer, M. Perez, and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161–72.

    Article  Google Scholar 

  37. C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950–53.

    Article  CAS  Google Scholar 

  38. T. Gladman and D.J. Senogles: Proc. Conf. on ‘Titanium Technology in Microalloyed Steels’, T.N. Baker, ed., Institute of Materials, London, 1997, pp. 83–90.

    Google Scholar 

  39. M. Chapa, S.F. Medina, V. Lopez, and B. Fernandez: ISIJ Int., 2002, vol. 42, pp. 1288–96.

    Article  CAS  Google Scholar 

  40. A. Echeverría and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 346, pp. 149–58.

    Article  Google Scholar 

  41. W.B. Li and K.E. Easterling: Acta Metall. Mater., 1990, vol. 38, pp. 1045–52.

    Article  CAS  Google Scholar 

  42. S.P. Ringer, W.B. Li, and K.E. Easterling: Acta Metall. Mater., 1989, vol. 37, pp. 1045–52.

    Article  Google Scholar 

  43. B. Garbarz: J. Mater. Process. Technol., 1995, vol. 53, pp. 147–58.

    Article  Google Scholar 

  44. S. Marapoulos, K. Karagiannis, and N. Ridley: J. Mater. Sci., 2007, vol. 42, pp. 1309–20.

    Article  Google Scholar 

  45. L.M. Fu, H.R. Wang, and A.D. Shan: Mater. Sci. Technol., 2011, vol. 27, pp. 996–1001.

    Article  Google Scholar 

  46. Q. Yu and Y. Sun: Mater. Sci. Eng. A, 2006, vol. 420, pp. 34–38.

    Article  Google Scholar 

Download references

Acknowledgments

Sincere thanks to SRIC, I.I.T. Kharagpur, for the research funding and the Department of Metallurgical and Materials Engineering, Steel Tech. Centre, and Central Research Facility in I.I.T. Kharagpur for the provision of research facilities. Sukanta Mandal, Sudipta Patra, and Anish Karmakar helped during the experimental work. The authors acknowledge the assistance from D. Srivastava, S. Neogi, and A. Laik from the Materials Science Division of BARC (Mumbai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chakrabarti.

Additional information

Manuscript submitted November 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Chakrabarti, D. & Dey, G.K. Austenite Grain Structures in Ti- and Nb-Containing High-Strength Low-Alloy Steel During Slab Reheating. Metall Mater Trans A 44, 717–728 (2013). https://doi.org/10.1007/s11661-012-1409-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1409-9

Keywords

Navigation