Skip to main content
Log in

Influence of Zn Coating on Interfacial Reactions and Mechanical Properties During Laser Welding-Brazing of Mg to Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To investigate the influence of Zn coating on the joining of magnesium alloy AZ31 to Zn-coated steel, dissimilar metal joining both with and without Zn coating was performed by the laser welding-brazing (LWB) process. Welding characteristics including joint appearance, identification of interfacial reaction layers, and mechanical properties were comparatively studied. The results indicated that the presence of Zn coating promoted the wetting of liquid filler wire on the steel substrate. Heterogeneous interfacial reaction layers formed along the interface between the Mg alloy and Zn-coated steel, whereas no distinct reaction layer and increased concentration of Al were identified at the interface between the Mg alloy and noncoated steel. The maximum tensile-shear strength of Mg/steel lap joint with Zn coating reached 180 N/mm, which was slightly higher than that achieved without Zn coating (160 N/mm). Failure of joint in both cases occurred at the interface; however, the fracture mode was found to differ. For Zn-coated steel, the crack propagated along the Mg-Zn reaction layer and Fe-Al phase, with little Mg-Zn reaction phases remaining on the steel side. As for noncoated steel, some remnants of the seam adhered to the steel substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  2. K.K. Mustafa: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851–65.

    Article  Google Scholar 

  3. A.R. Marder: Progr. Mater. Sci., 2000, vol. 45, pp. 191–271.

    Article  CAS  Google Scholar 

  4. X. Li, S. Lawson, Y. Zhou, and F. Goowin: J. Laser Appl., 2007, vol. 19, pp. 259–64.

    Article  CAS  Google Scholar 

  5. M.P. Graham, D.M. Hirak, H.W. Kerr, and D.C. Weckman: J. Laser Appl., 1994, vol. 6, pp. 212–22.

    Article  CAS  Google Scholar 

  6. S.L. Yang and R. Kovacevic: J. Laser Appl., 2009, vol. 21, pp. 139–48.

    Article  CAS  Google Scholar 

  7. M.M.S. Gualini, S. Iqbal, and F. Grassi: J. Laser Appl., 2006, vol. 18, pp. 185–91.

    Article  CAS  Google Scholar 

  8. S. Iqbal and M.M.S. Gualini: J. Mater. Process Tech., 2007, vol. 184, pp. 12–18.

    Article  CAS  Google Scholar 

  9. Y.C. Chen and K. Nakata: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 293–98.

    Article  CAS  Google Scholar 

  10. Y.C. Chen and K. Nakata: Mater. Des., 2009, vol. 30, pp. 3913–19.

    Article  CAS  Google Scholar 

  11. S. Jana, Y. Hovanski, and G.J. Grant: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3173–82.

    Article  Google Scholar 

  12. L. Liu, L. Xiao, J.C. Feng, Y.H. Tian, S.Q. Zhou, and Y. Zhou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2651–61.

    Article  CAS  Google Scholar 

  13. Y.B. Chen, S.H. Chen, and L.Q. Li: Mater. Des., 2010, vol. 31, pp. 227–33.

    Article  Google Scholar 

  14. S.H. Chen, L.Q. Li, Y.B. Chen, and J.H. Huang: J. Alloy. Compd., 2011, vol. 509, pp. 891–98.

    Article  CAS  Google Scholar 

  15. Y.B. Chen, S.H. Chen, and L.Q. Li: Int. J. Adv. Manuf. Technol., 2009, vol. 44, pp. 265–72.

    Article  Google Scholar 

  16. C. Dharmendra, K.P. Rao, J. Wilden, and S. Reich: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1497–1503.

    Article  Google Scholar 

  17. A. Mathieu, S. Pontevicci, J.C. Viala, E. Cicala, S. Matteï, and D. Grevey: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 19–28.

  18. H.T. Zhang, J.C. Feng, P. He, and H. Hackl: Mater. Charact., 2007, vol. 58, pp. 588–92.

    Article  CAS  Google Scholar 

  19. H.T. Zhang and J.K. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6179–85.

    Article  CAS  Google Scholar 

  20. A. Koltov, N. Bailly, and L. Cretteur: J. Mater. Sci., 2011, vol. 45, pp. 2118–25.

    Article  Google Scholar 

  21. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley: Rev. Mod. Phys., 2009, vol. 81, pp. 739–805.

    Article  CAS  Google Scholar 

  22. J.B. Clark, L. Zabdyr, and Z. Moser: Phase Diagrams of Binary Magnesium Alloys, ASM International, Materials Park, OH, 1988, pp. 353–64.

    Google Scholar 

  23. L. Ma, D.Y. He, and X.Y. Li: Mater. Lett., 2010, vol. 54, pp. 596–98.

    Article  Google Scholar 

  24. L. Agudo, D. Eyidi, C.H. Schmaranzer, E. Arenholz, N. Jank, J. Bruckner, and A.R. Pyzalla: J. Mater. Sci., 2007, vol. 42, pp. 4205–14.

    Article  CAS  Google Scholar 

  25. Y.G. Miao, D.F. Han, J.Z. Yao, and F. Li: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 97–103.

    Article  CAS  Google Scholar 

  26. C.W. Tan, C.X. Mei, L.Q. Li, J.M. Dai, and W. Guo: Chinese J. Nonferr. Metals, in press.

  27. Y.G. Miao, D.F. Han, J.Z. Yao, and F. Li: Mater. Des., 2010, vol. 31, pp. 3121–26.

    Article  CAS  Google Scholar 

  28. C.W. Tan, L.Q. Li, Y.B. Chen, W. Guo, and W. Wang: Chinese J. Lasers, 2011, vol. 38, pp. 166–72.

    Google Scholar 

  29. A.A. Nayeb-Hashemi, J.B. Clark, and L.J. Swartzendruber: Bull. Alloy Phase Diagr., 1988, vol. 6, pp. 235–38.

    Article  Google Scholar 

  30. R.S. Coelho, A. Kostka, H. Pinto, S. Riekehr, M. Koçak, and A.R. Pyzalla: Mater. Sci. Eng. A, 2008, vol. 485, pp. 20–30.

    Article  Google Scholar 

  31. U.R. Kattner: Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM International, Materials Park, OH, 1990, pp. 147–49.

Download references

Acknowledgments

The authors want to thank Dr. Dejian Liu, Huazhong University of Science and Technology; Dr. Lei Liu, Harbin Institute of Technology; and Dr. Shuhai Chen, University of Science and Technology Beijing for their helpful suggestions and discussions. The authors would like to express their gratitude to Dr. Andie Pequegnat, Centre for Advanced Materials Joining, University of Waterloo, for his help in English revision of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Li.

Additional information

Manuscript submitted November 19, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Tan, C., Chen, Y. et al. Influence of Zn Coating on Interfacial Reactions and Mechanical Properties During Laser Welding-Brazing of Mg to Steel. Metall Mater Trans A 43, 4740–4754 (2012). https://doi.org/10.1007/s11661-012-1266-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1266-6

Keywords

Navigation