Skip to main content
Log in

Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The flow behavior of dual-phase (DP) steels is modeled on the finite-element method (FEM) framework on the microscale, considering the effect of the microstructure through the representative volume element (RVE) approach. Two-dimensional RVEs were created from microstructures of experimentally obtained DP steels with various ferrite grain sizes. The flow behavior of single phases was modeled through the dislocation-based work-hardening approach. The volume change during austenite-to-martensite transformation was modeled, and the resultant prestrained areas in the ferrite were considered to be the storage place of transformation-induced, geometrically necessary dislocations (GNDs). The flow curves of DP steels with varying ferrite grain sizes, but constant martensite fractions, were obtained from the literature. The flow curves of simulations that take into account the GND are in better agreement with those of experimental flow curves compared with those of predictions without consideration of the GND. The experimental results obeyed the Hall-Petch relationship between yield stress and flow stress and the simulations predicted this as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. J. Shaw, B. Engl, C. Espina, E.C. Oren, and Y. Kawamoto: New Steel Sheet and Steel Bar Products and Processing, D.W. Anderson, ed., SAE-SP 1685, Society of Automotive Engineers (SAE), Warrendale, PA, 2002, pp. 63–71.

  2. B.C. De Cooman, J.G. Speer (2011) Fundamentals of Steel Product Physical Metallurgy, ASM International, Materials Park, OH, p. 392.

    Google Scholar 

  3. R.D. Lawson, D.K. Matlock, and G. Krauss: Fundamentals of Dual Phase Steels Symposium, TMS-AIME, Warrendale, PA, 1981, pp. 347–81.

    Google Scholar 

  4. Y.I. Son, Y.K. Lee, K.-T. Park, C.S. Lee, D. Hyuk Shin (2005) Acta Mater (53): 3125–34.

    Article  CAS  Google Scholar 

  5. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  6. U. Liedl, S. Traint, and E.A. Werner: Computat. Mater. Sci., 2002, vol. 25, pp. 122–28.

    Article  CAS  Google Scholar 

  7. H. Fischmeister and B. Karlsson: Z. Für Metallkunde, 1977, vol. 68, pp. 311–27.

    CAS  Google Scholar 

  8. M. Dollar and S. Gorczyca: Metal Sci., 1983, vol. 17, pp. 671–79.

    Article  Google Scholar 

  9. M.Y. Liu, B. Shi, C. Wang, S.K. Ji, X. Cai, and H.W. Song: Mater. Lett., 2002, vol. 57, pp. 2798–2802.

    Article  Google Scholar 

  10. O. Maid: PhD Thesis, RWTH, Aachen University, Aachen, Germany, 1986.

  11. W. Bleck and W. Mueschenborn: Thyssen Technische Berichte, 1984, no.1, pp. 24–32.

  12. Z. Jiang, G. Zhenzhong, and J. Lian: Mater. Sci., 1995, vol. 190, pp. 55–64.

    Google Scholar 

  13. C.A.N. Lanzilotto and F.B. Pickering: Metal Sci., 1982, vol. 16, p. 371.

    Article  Google Scholar 

  14. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.

    Article  CAS  Google Scholar 

  15. J.M. Rigsbee and P.J. Van der Arend: Dual-Phase HSLA Steels, Formable HSLA and Dual-Phase Steels, A.T. Davenport, ed., TMS-AIME, Warrendale, PA, 1979, pp. 56–86.

  16. A.R. Marder: Metall. Trans. A, 1982, vol. 13, pp. 85–92.

    CAS  Google Scholar 

  17. R. Davies: Metall. Trans. A, 1978, vol. 9, pp. 671–79.

    CAS  Google Scholar 

  18. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  19. M.F. Ashby: Phil. Mag., 1966, vol. 14, pp. 1157–78.

    Article  CAS  Google Scholar 

  20. Z. Jiang, J. Liu, and J. Lian: Acta Metall. Mater., 1992, vol. 40, pp. 1587–97.

    Article  CAS  Google Scholar 

  21. R.M. Rodriguez and I. Gutierrez: Mater. Sci. Forum, 2003, vols. 426–432, pp. 4525–30.

    Article  Google Scholar 

  22. V. Uthaisangsuk: PhD Thesis, RWTH, Aachen University, Aachen, Germany, 2009.

  23. V. Uthaisangsuk, S. Muenstermann, U. Prahl, W. Bleck, H.-P. Schmitz, and T. Pretorius: Computat. Mater. Sci., 2011, vol. 50, pp. 1225–32.

    Article  CAS  Google Scholar 

  24. C. Thomser, V. Uthaisangsuk, and W. Bleck: Steel Res. Int., 2009, vol. 80, pp. 582–87.

    CAS  Google Scholar 

  25. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.

    Article  CAS  Google Scholar 

  26. R. Kaspar and O. Pawelski: Materialprufung, 1989, vol. 31, p. 14.

    CAS  Google Scholar 

  27. O. Pawelski and R. Kaspar: Materialprufung, 1988, vol. 30, p. 357.

    CAS  Google Scholar 

  28. V.G. Kouznetsova: PhD Thesis, Technical University Eindhoven, Eindhoven, the Netherlands, 2002.

  29. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck: Comput. Mater. Sci., 2011, vol. 52, pp. 46–54.

    Article  Google Scholar 

  30. Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.

    Article  Google Scholar 

  31. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  32. O. Bouaziz and P. Buessler: La Revue De Metallurgie–CIT 99, 2002, pp. 71–77.

  33. G. Reisner: VDI Fortschritt-Berichte, Reihe 18: Mechanik/Bruchmechanik, no. 214.

  34. G. Piatti and P. Schiller: J. Nucl. Mater., 1986, vols. 141–143, pp. 417–26.

    Article  Google Scholar 

  35. B.A. Bilby and J.W. Christian: J. Iron Steel Inst., 1961, vol. 197, pp. 122–31.

    CAS  Google Scholar 

  36. M.S. Wechsler, D.S. Lieberman, and T.A. Read: AIME Trans. JIM, 1953, vol. 197, pp. 1503–15.

    Google Scholar 

  37. T. Gladman and F.B. Pickering: Yield, Flow and Fracture of Polycrystals, T.N. Baker, ed., Applied Science Publishers Ltd., London, U.K., 1983, pp. 141–98.

  38. W. Bleck: Material Characterisation, 1st ed., Verlag Mainz, Aachen, Germany, 2009.

    Google Scholar 

  39. F.B. Pickering: Constitution and Properties of Steels, R.W. Chan and F.B. Pickering, eds., VCH Verlasgesellschaft GmbH, Weinheim, Germany, 1992, pp. 41–94.

  40. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto: Acta Mater., 2011, vol. 59, pp. 4387–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out under project number MC2.07293 in the framework of the Research Program of the Materials Innovation Institute M2i (www.m2i.nl). The authors also wish to thank Dr. Marion Calcagnotto from Salzgitter Mannesmann Forschung GmbH for her tensile test data files and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ramazani.

Additional information

Manuscript submitted August 5, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramazani, A., Mukherjee, K., Prahl, U. et al. Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size. Metall Mater Trans A 43, 3850–3869 (2012). https://doi.org/10.1007/s11661-012-1196-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1196-3

Keywords

Navigation