Skip to main content
Log in

Thermal Shock Damage and Microstructure Evolution of Thermal Barrier Coatings on Mar-M247 Superalloy in a Combustion Gas Environment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.W. Goward: Surf. Coat. Technol., 1998, vols. 108–109 (1–3), pp. 73–79.

    Article  Google Scholar 

  2. J.R. Nicholls, N.J. Simms, W.Y. Chan, and H.E. Evans: Surf. Coat. Technol., 2002, vol. 149 (2–3), pp. 236–44.

    Article  CAS  Google Scholar 

  3. D.R. Mumm, M. Watanabe, A.G. Evans, and J.A. Pfaendtner: Acta Mater., 2004, vol. 52, pp. 1123–31.

    Article  CAS  Google Scholar 

  4. A. Nusair Khan and J. Lu: Surf. Coat. Technol., 2003, vol. 166, pp. 37–43.

    Article  Google Scholar 

  5. M.Y. Ali, X. Chen, and G.M. Newaz: J. Mater. Sci., 2001, vol. 36, pp. 4535–42.

    Article  CAS  Google Scholar 

  6. C. Ramachandra, K.N. Lee, and S.N. Tewari: Surf. Coat. Technol., 2003, vol. 172, pp. 150–57.

    Article  CAS  Google Scholar 

  7. Z.H. Gan and H.W. Ng: Mater. Sci. Eng., 2004, vol. 385A, pp. 314–24.

    Google Scholar 

  8. A. Nusair Khan and J. Lu: Surf. Coat. Technol., 2007, vol. 201, pp. 4653–58.

    Article  Google Scholar 

  9. M.H. Li, X.F. Sun, W.Y. Hu, and H.R. Guan: Surf. Coat. Technol., 2007, vol. 201, pp. 7387–91.

    Article  CAS  Google Scholar 

  10. H.D. Steffens and U. Fischer: Surf. Coat. Technol., 1987, vol. 32 (1–4), pp. 327–38.

    Article  CAS  Google Scholar 

  11. A. Bolcavage, A. Feuerstein, J. Foster, and P. Moore: J. Mater. Eng. Perform., 2004, vol. 13 (4), pp. 389–97.

    Article  CAS  Google Scholar 

  12. K. Kokini, J. DeJonge, S. Rangaraj, and B. Beardsley: Surf. Coat. Technol., 2002, vol. 154, pp. 223–31.

    Article  CAS  Google Scholar 

  13. D.M. Zhu and R.A. Miller: NASA Technical Report No. ARL-TR-1354, NASA, Washington, DC, June 1997.

  14. I. Taymaz, A. Mimaroglu, E. Avc, V. Uçar, and M. Gur: Surf. Coat. Technol., 1999, vols. 116–119, pp. 690–93.

    Article  Google Scholar 

  15. P.L. Ke, Q.M. Wang, J. Gong, C. Sun, and Y.C. Zhou: Mater. Sci. Eng., 2006, vols. 435A–436A, pp. 228–36.

    Google Scholar 

  16. A. Portinha, V. Teixeira, J. Carneiro, M.G. Beghi, C.E. Bottani, N. Franco, R. Vassen, D. Stoever, and A.D. Sequeira: Surf. Coat. Technol., 2004, vols. 188–189, pp. 120–28.

    Article  Google Scholar 

  17. A. Nusair Khan and J. Lu: J. Mater. Process. Technol., 2009, vol. 209 (5), pp. 2508–14.

    Article  Google Scholar 

  18. A. Rabiei and A.G. Evans: Acta Mater., 2000, vol. 48, pp. 3963–76.

    Article  CAS  Google Scholar 

  19. M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini: Eng. Fail. Analy., 2006, vol. 13, pp. 409–26.

    Article  CAS  Google Scholar 

  20. T. Xu, M.Y. He, and A.G. Evans: Acta Mater., 2003, vol. 51, pp. 3807–20.

    Article  CAS  Google Scholar 

  21. C.J. Wang and J.S. Lin: Mater. Chem. Phys., 2002, vol. 76, pp. 123–29.

    Article  Google Scholar 

  22. H. Mei, L.F. Cheng, L.T. Zhang, and Y.D. Xu: Mater. Sci. Eng., 2006, vol. 430A, pp. 314–19.

    Google Scholar 

  23. Y.N. Liu, L.T. Zhang, H. Mei, and L.F. Cheng: Rare Met. Mater. Eng., 2009, vol. 38 (1), pp. 176–79.

    CAS  Google Scholar 

  24. M. Matsumoto, T. Kato, K. Hayakawa, N. Yamaguchi, S. Kitaoka, and H. Matsubara: Surf. Coat. Technol., 2008, vol. 202, pp. 2743–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Grant No. 50902112), Honeywell International Inc., Northwestern Polytechnical University (NPU) Foundation for Fundamental Research (Grant No. JC201135), and NPU Foundation for Flying Star. The preparation of the BC and top ceramic coat on the superalloy from Xi’an Jiaotong University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Mei.

Additional information

Manuscript submitted July 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, H. Thermal Shock Damage and Microstructure Evolution of Thermal Barrier Coatings on Mar-M247 Superalloy in a Combustion Gas Environment. Metall Mater Trans A 43, 1781–1790 (2012). https://doi.org/10.1007/s11661-011-1055-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1055-7

Keywords

Navigation