Skip to main content
Log in

Sensitization and Intergranular Corrosion Behavior of High Nitrogen Type 304LN Stainless Steels for Reprocessing and Waste Management Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High nitrogen 304LN stainless steels (SS) intended for chloride and nitric acid environments in spent nuclear fuel reprocessing and waste management applications were evaluated for their sensitization and intergranular corrosion (IGC) resistance. For this purpose, high nitrogen (0.132 pct, 0.193 pct and 0.406 pct) containing, impurity-controlled, vanadium-added 304LN SS alloys were developed. For comparison, 304L SS, which is currently used in reprocessing plants, was also studied. These stainless steels were subjected to heat treatment at 948 K (675 °C) for various durations ranging from 1 to 1000 hours and tested for susceptibility to IGC as per ASTM A262 Practice A and E tests. The degree of sensitization was estimated with the double loop electrochemical potentiokinetic reactivation technique. The increase in nitrogen content resulted in higher hardness and finer grain size. Based on the detailed microstructural and corrosion studies, it was determined that an addition of 0.132 pct and 0.193 pct nitrogen showed better IGC resistance and an additional increase in nitrogen resulted in deterioration resulting from chromium nitride precipitation, which was confirmed by electrochemical phase separation and X-ray diffraction studies. The onset of desensitization was faster for the alloy with 0.132 pct nitrogen as well as 0.406 pct nitrogen because of the lower nitrogen content in the former case and the finer grain size in the latter case. The higher hardness and superior IGC resistance of 0.132 pct and 0.193 pct nitrogen containing Type 304LN SS suggests the suitability of this alloy for nitric acid- and chloride-containing environments of reprocessing and waste management plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. U. Kamachi Mudali, R.K. Dayal, and J. B. Gnanamoorthy: J. Nucl. Mater., 1993, vol. 203, pp. 73–82.

    Article  Google Scholar 

  2. Proc. of a Technical Committee Meeting on Materials Reliability in the Back End of the Nuclear Fuel Cycle, International Atomic Energy Agency, Vienna, Austria, 1987.

  3. R.D. Shaw: Br. Corrosion J., 1990, vol. 25, pp. 97–107.

    CAS  Google Scholar 

  4. T. Yamanouchi, A. Aoshima, N. Sasoa, S. Takeda, and N. Ishiguro: Proc. of a Technical Committee Meeting on Materials Reliability in the Back End of the Nuclear Fuel Cycle, International Atomic Energy Agency, Vienna, Austria, 1987, pp. 129–46.

  5. J. Decours, J.C. Decugis, R. Demay, M. Pelras, and G. Turluer: Proc. of a Technical Committee Meeting on Materials Reliability in the Back End of the Nuclear Fuel Cycle, International Atomic Energy Agency, Vienna, Austria, 1987, pp. 117–26.

  6. V.P. Balakrishnan: Proc. of Workshop on Failure Analysis, Corrosion Evaluation and Metallography, Bombay, India, 1992, pp. 273–82.

  7. B. Raj and K.V. Kasiviswanathan: Proc. of the Int. Conf. on Advances in Mechanical and Industrial Engineering, University of Roorkee, India, 1997, pp. 1–10.

  8. B. Raj and U. Kamachi Mudali: Progr. Nucl. Energ., 2006, vol. 48, pp 283–313.

    Article  CAS  Google Scholar 

  9. U. Kamachi Mudali and B. Raj: High Nitrogen Steel and Manufacturing, Properties and Applications, ASM International, Novelty, OH, 2004.

    Google Scholar 

  10. J.W. Simmons: Mater. Sci. Eng., 1996, vol. A207, pp.159–69.

    CAS  Google Scholar 

  11. S. Ningshen, U. Kamachi Mudali, V.K. Mittal, and H.S. Khatak: Corros. Sci., 2007, vol. 49, pp. 481–96.

    Article  CAS  Google Scholar 

  12. N. Parvathavarthini, R.K. Dayal, and J.B. Gnanamoorthy: J. Nucl. Mater., 1994, vol. 208, pp. 251–58.

    Article  CAS  Google Scholar 

  13. N. Parvathavarthini and R.K. Dayal: J. Nucl. Mater., 2002, vol. 305, pp. 209–19.

    Article  CAS  Google Scholar 

  14. U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, and P. Rodriguez: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2881–87.

    Article  Google Scholar 

  15. H.S. Bertrabet, K. Nishimoto, B.E. Wilde, and W.A.T. Clark: Corrosion, 1987, vol. 43, pp. 77–84.

    Article  Google Scholar 

  16. T.A. Mozhi, W.A.T. Clark, K. Nishimoto, W.B. Johnson, and D.D. Macdonald: Corrosion, 1985, vol. 41, pp. 555–59.

    Article  CAS  Google Scholar 

  17. S. Dutta, P.K De, and H.S. Gadiyar: Corrosion Sci., 1993, vol. 34, pp. 51–60.

    Article  CAS  Google Scholar 

  18. C.L. Briant, R.A. Mullford, and E.L. Hall: Corrosion, 1982, vol. 38, pp. 468–77.

    Article  CAS  Google Scholar 

  19. J.J. Eckenrod and C.W. Kouach: Effect of Nitrogen on the Sensitisation, Corrosion and Mechanical Properties of 18Cr-8Ni SS, C.R. Brinkman and H.W. Garvin, eds., ASTM, Philadelphia, PA, 1979, pp. 17–40.

  20. A. Kendal, J.E. Truman, and K.B. Lomax: Int. Conf. on High Nitrogen Steel, J. Foct and A. Hendry, eds., The Institute of Metals, New York, NY, 1989, pp. 405–13.

  21. P. Gumpel and T. Ladwein: Proc. Int. Conf. on High Nitrogen Steel, J. Foct and A. Hendry, eds., The Institute of Metals, New York, NY, 1989, pp. 272–79.

  22. J.E. Truman: Proc. Int. Conf. on High Nitrogen Steel, J. Foct and A. Hendry, eds., The Institute of Metals, New York, NY, 1989, pp. 225–39.

  23. R.F.A. Jargelius: Proc. on Stainless Steel 87, Institute of Metals, New York, NY, 1987, pp. 266–72.

  24. B. Baroux, M.C. Orlandi, and P. Maitrepierre: Metal. Technol., 1984, vol. 11, pp. 378–82.

    CAS  Google Scholar 

  25. Y.N. Petrov, V.G. Gavriljuk, H. Berns, and C. Escher: Scripta Mater., 1999, vol. 40, pp. 669–74.

    Article  CAS  Google Scholar 

  26. H. Berns: ISIJ Int., 1996, vol. 36, no. 7, pp. 907–14.

    Google Scholar 

  27. H. Uno, A. Kimura, and T. Missawa: Corrosion, 1992, vol. 48, pp. 467–74.

    Article  CAS  Google Scholar 

  28. R. Requiz and I. Alvarez: Mater. Sci. Forum, 1998, vols. 289–292, pp. 1007–18.

    Article  Google Scholar 

  29. Recommended Practices for Detecting Susceptibility to Intergranualar Corrosion in Stainless Steels, vol. 3.02, ASTM Publications, Philadelphia, PA, 2002.

  30. T.P.S. Gill and J.B. Gnanamoorthy: J. Mater. Sci., 1982, vol. 17, pp. 1513–18.

    Article  CAS  Google Scholar 

  31. S.K. Mannan, N. Parvathavarthini, R.K. Dayal, and M. Vijayalakshmi: J. Nucl. Mater., 1984, vol. 126, pp. 1–8.

    Article  CAS  Google Scholar 

  32. N. Parvathavarthini, R.K. Dayal, and J.B. Gnanamoorthy: J. Test. Eval., 1986, vol. 14, pp. 3–6.

    Article  CAS  Google Scholar 

  33. N. Parvathavarthini, R.K. Dayal, and J.B. Gnanamoorthy: Indian Weld. J., 1988, vol. 20, pp. 406–13.

    Google Scholar 

  34. N. Parvathavarthini, R.K. Dayal, S.K. Seshadari, and J.B. Gnanamoorthy: J. Nucl. Mater., 1989, vol. 168, pp. 83–96.

    Article  CAS  Google Scholar 

  35. N. Parvathavarthini, R.K. Dayal, S.K. Seshadri, and J.B. Gnanamoorthy: Br. Corros. J., 1991, vol. 26, pp. 67–76.

    CAS  Google Scholar 

  36. N. Parvathavarthini, R.K. Dayal, R. Ravi, and H.S. Khatak: Trans. IIM, 2003, vol. 56, pp. 499–504.

    CAS  Google Scholar 

  37. R.K. Dayal, N. Parvathavarthini, and Baldevraj: Int. Mater. Rev., 2005, vol. 50, pp. 129–55.

  38. N. Parvathavarthini, R.K. Dayal, H.S. Khatak, V. Shankar, and V. Shanmugam: J. Nucl. Mater., 2006, vol. 355, pp. 68–82.

    Article  CAS  Google Scholar 

  39. N. Parvathavarthini, R.K. Dayal, R. Kaul, P. Ganesh, J. Khare, A.K. Nath, S.K. Mishra, and I. Samajdar: Sci. Technol. Welding Joining, 2008, vol. 13, pp. 335–43.

    Article  CAS  Google Scholar 

  40. A.P. Majidi and M.A. Streicher: Corrosion, 1984, vol. 40, pp. 584–92.

    Article  CAS  Google Scholar 

  41. S.M. Bruemmer, L.A. Charlott, and B.W. Arey: Corrosion, 1988, vol. 44, pp. 328–33.

    Article  CAS  Google Scholar 

  42. V. Cihal and R. Stefec: Electrochim. Acta, 2001, vol. 46, pp. 3867–77.

    Article  CAS  Google Scholar 

  43. R. Pascali, A. Benvenuti, and D. Wenger: Corrosion, 1984, vol. 40, pp. 21–32.

    Article  CAS  Google Scholar 

  44. E. Almanza and L.E. Murr: J. Mater. Sci., 2000, vol. 35, pp. 3181–88.

    Article  CAS  Google Scholar 

  45. C. Strawstorm and M. Hillert: J. Iron Steel Inst., 1969, vol. 207, pp. 77–85.

    Google Scholar 

Download references

Acknowledgments

The experimental assistance provided by Shri A. Vinod kumar in carrying out heat treatments and IGC testing is gratefully acknowledged. The authors thank Dr. S Murugesan, Physical Metallurgy Division for X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kamachi Mudali.

Additional information

Manuscript submitted July 18, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvathavarthini, N., Kamachi Mudali, U., Nenova, L. et al. Sensitization and Intergranular Corrosion Behavior of High Nitrogen Type 304LN Stainless Steels for Reprocessing and Waste Management Applications. Metall Mater Trans A 43, 2069–2084 (2012). https://doi.org/10.1007/s11661-011-1053-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1053-9

Keywords

Navigation