Skip to main content
Log in

Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-49Ti and Ni-30Pt-50Ti (nominal at. pct) shape memory alloys (SMAs) were isothermally oxidized in air over the temperature range of 773 K to 1173 K (500 °C to 900 °C) for 100 hours. The oxidation kinetics, presented in detail in a companion study, show ~4 times reduction in oxidation rate due to Pt.[1] The microstructure, composition, and phase content of the scales and depletion zones were determined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). A relatively pure TiO2 rutile structure was identified as the predominant scale surface feature, typified by a distinct highly striated and faceted crystal morphology, with crystal size proportional to oxidation temperature. The complex layered structure beneath these crystals was characterized by semiquantitative XRD of serial/taper polished sections and SEM/EDS of cross sections for samples oxidized at 973 K (700 °C). In general, graded mixtures of TiO2, NiTiO3, NiO, Ni(Ti), or Pt(Ni) metallic dispersoids, and continuous Ni3Ti or Pt-rich metal depletion zones, were observed from the gas surface to the substrate interior. Overall, substantial depletion of Ti occurred due to the formation of predominantly TiO2 scales. It is proposed that the Ni-30Pt-50Ti alloy oxidized more slowly than the binary Ni-49Ti alloy by decreasing oxygen and titanium diffusion through the thin Pt-rich layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.L. Smialek, D.L. Humphrey, and R.D. Noebe: Oxid. Met., 2010, vol. 74, pp. 125–44.

    Article  CAS  Google Scholar 

  2. W. Tang: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 537–44.

    Article  Google Scholar 

  3. J. Ma, I. Karaman, and R.D. Noebe: Int. Mater. Rev., 2010, vol. 55, pp. 257–315.

    Article  CAS  Google Scholar 

  4. R. Noebe, D. Gaydosh, S. Padula, A. Garg, T. Biles, and M. Nathal: Proc. SPIE, 2005, vol. 5761, pp. 364–75.

    Article  CAS  Google Scholar 

  5. S. Padula, G. Bigelow, R. Noebe, and D. Gaydosh, and A. Garg: SMST 2006: Proc. Int. Conf. on Shape Memory and Superelastic Technologies, ASM INTERNATIONAL, Metals Park, OH, 2008, pp. 787–802.

  6. O. Rios, R.D. Noebe, T. Biles, A. Garg, A. Palczer, D. Scheiman, H.J. Seifert, and M. Kaufman: Proc. SPIE, 2005, vol. 5761, pp. 376–87.

    Article  CAS  Google Scholar 

  7. E.T.F. Chau, C.M. Friend, D.M. Allen, J. Hora, and J.R. Webster: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 589–92.

  8. J.A. DeCastro, K.J. Melcher, and R.D. Noebe: Proc. 41st Joint Propulsion Conf., American Institute of Aeronautics and Astronautics, Reston, VA, 2005, paper no. AIAA-2005-3988.

  9. F.T. Calkins and J.H. Mabe: J. Mech. Des., 2010, vol. 132, pp. 111012-1–111012-7.

  10. D. Stoeckel: Mater. Des., 1990, vol. 11, pp. 302–07.

    Article  Google Scholar 

  11. J.V. Humbeeck: Mater. Sci. Eng., A, 1999, vols. 273–275, pp. 134–48.

    Google Scholar 

  12. T. Duerig, A. Pelton, and D. Stockel: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 149–60.

    Google Scholar 

  13. P. Filip, J. Lausmaa, J. Musialek, and K. Manzanec: Biomaterials, 2001, vol. 22, pp. 2131–38.

    Article  CAS  Google Scholar 

  14. C.L. Chu, T. Hu, S.L. Wu, Y.S. Dong, L.H. Yin, Y.P. Pu, P.H. Lin, C.Y. Cung, K.W.K. Yeung, and P.K. Chu: Acta Biomater., 2007, vol. 3, pp. 795–806.

    Article  CAS  Google Scholar 

  15. B. Lin, K. Gall, H.J. Maier, and R. Waldron: Acta Biomater., 2009, vol. 5, pp. 795–806.

    Google Scholar 

  16. G. Mani, M.D. Feldman, D. Patel, and C.M. Agrawal: Biomaterials, 2007, vol. 28, pp. 1689–1710.

    Article  CAS  Google Scholar 

  17. J.L. Smialek, D.L. Humphrey, and R.D. Noebe: Oxidation Kinetics of a NiTiPt High Temperature Shape Memory Alloy, NASA/TM-2007-214697, NASA, Washington, DC, 2007.

    Google Scholar 

  18. T. Satow, T. Isano, and T. Honma: J. Jpn. Inst. Met., 1974, vol. 38, pp. 242–46.

    Google Scholar 

  19. C.M. Chan, S. Trigwell, and T.W. Duerig: Surf. Interface Anal., 1990, vol. 5, pp. 349–54.

    Article  Google Scholar 

  20. C.L. Chu, S.K. Wu, and Y.C. Yen: Mater. Sci. Eng., A, 1996, vol. 216, pp. 193–200.

    Article  Google Scholar 

  21. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck: Biomaterials, 2002, vol. 23, pp. 4863–71.

    Article  CAS  Google Scholar 

  22. L. Zhu, J.M. Fino, and A. Pelton: SMST 2003, Proc. Int. Conf. on Shape Memory and Superelastic Technologies, ASM INTERNATIONAL, Metals Park, OH., 2003, pp. 357–66.

  23. D. Vojtěch, P. Novák, M. Novák, L. Jaska, T. Fabián, J. Maixner, and V. Machovič: Intermetallics, 2008, vol. 16, pp. 424–31.

    Article  Google Scholar 

  24. C.H. Xu, X.Q. Ma, S.Q. Shi, and C.H. Woo: Mater. Sci. Eng., A, 2004, vol. 371, pp. 45–50.

    Article  Google Scholar 

  25. Q. Tian and J. Wu: Mater. Sci. Forum, 2002, vols. 394–395, pp. 455–58.

    Article  Google Scholar 

  26. Q. Tian, J. Chen, Y. Chen, and J. Wu: Z. Metallkd., 2003, vol. 94, pp. 36–40.

    CAS  Google Scholar 

  27. K.-N. Lin and S.-K. Wu: Oxid. Met., 2009, vol. 71, pp. 187–200.

    Article  CAS  Google Scholar 

  28. J.L. Smialek, A. Garg, R.B. Rogers, and R.D. Noebe: Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys, NASA/TM–2011-217096, NASA, Washington, DC, 2011.

    Google Scholar 

  29. K. Otsuka and X. Ren: Prog. Mater Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  30. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 3, p. 2874.

  31. K. Tello, S. Cochran, J. Nuechterlein, K. Roman, D. Drake, H. Rosin, A. Garg, R. Noebe, and M.J. Kaufman: unpublished research, Colorado School of Mines, 2011.

  32. J.L. Smialek, M.A. Gedwell, and P.K. Brindley: Scripta Metall. Mater., 1990, vol. 24, pp. 1291–96.

    Article  CAS  Google Scholar 

  33. C.L. Zeng, M.C. Li, G.Q. Liu, and W.T. Wu: Oxid. Met., 2002, vol. 58, pp. 171–84.

    Article  CAS  Google Scholar 

  34. Y.-J. Park, H.-J. Song, I. Kim, and H.-S. Yang: J. Mater. Med., 2007, vol. 18, pp. 565–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank R. Mattingly for his expert assistance with XRD data acquisition and analysis, enabling the success of the serial/taper section phase profiling studies. This work was funded by the NASA Fundamental Aeronautics Program, Supersonic Project (Dr. Dale Hopkins, API).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Smialek.

Additional information

Manuscript submitted January 28, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smialek, J.L., Garg, A., Rogers, R.B. et al. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys. Metall Mater Trans A 43, 2325–2341 (2012). https://doi.org/10.1007/s11661-011-1036-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1036-x

Keywords

Navigation