Skip to main content

Advertisement

Log in

Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structural changes in a 9 pct Cr martensitic steel during a creep test at 923 K (720 °C) under the applied stress of 118 MPa were examined. The tempered martensite lath structure (TMLS) was characterized by M23C6-type carbide particles with an average size of about 110 nm and MX-type carbonitrides with a size of 40 nm. The M23C6 particles were located on the packet/block/lath boundaries, whereas the MX precipitates were distributed homogeneously throughout TMLS. TMLS in the grip portion of the crept specimen changed scarcely during the tests. In contrast, the structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. The formation of a well-defined subgrain structure in the gauge section was accompanied by the coarsening of M23C6 carbides and precipitations of Laves phase during creep. The most pronounced structural changes occurred just at the beginning of the tertiary creep regime, which was interpreted as a result of the change in the mechanism of grain boundary pinning by precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.K. Maruyama, K. Sawada, and J. Koike: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 641-43.

    Article  CAS  Google Scholar 

  2. P.J. Ennis and A. Czyrska-Filemonowicz: Sadhana, 2003, vol. 28, pp. 709-30.

    Article  CAS  Google Scholar 

  3. M. Taneike, F. Abe, and K. Sawada: Nature, 2007, vol. 424, pp. 294-96.

    Article  Google Scholar 

  4. F. Abe, M. Taneike, and K. Sawada: Int. J. Pres. Ves. Pip., 2007, vol. 84, pp. 3-12.

    Article  CAS  Google Scholar 

  5. J. Hald: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 30-37.

    Article  CAS  Google Scholar 

  6. G. Gupta and G.S. Was: Metall. Mater. Trans. A, 2008, vol. 39A, pp 150-64.

    Article  CAS  Google Scholar 

  7. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine: Mater. Sci. Eng. A, 1999, vol. A267, pp. 19-25.

    CAS  Google Scholar 

  8. F. Abe, T. Horiuchi, M. Taneike, and K. Sawada: Mater. Sci. Eng. A, 2004, vol. A378, pp. 299-303.

    CAS  Google Scholar 

  9. F. Abe: Mater. Sci. Eng. A, 2004, vols. 387-9, pp. 565-69.

    Google Scholar 

  10. A. Kostka, K.-G. Tak, R.J. Hellmig, Y. Estrin, and G. Eggeler: Acta Mater., 2007, vol. 55, pp. 539-50.

    Article  CAS  Google Scholar 

  11. M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans A., 2004, vol. 35A, pp. 1255-61.

    Article  CAS  Google Scholar 

  12. R.O. Kaybyshev, V.N. Skorobogatykh, and I.A. Shchenkova: Phys. Met. Metall., 2010, vol. 109, pp. 186-200.

    Article  Google Scholar 

  13. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Atlanta, GA, 2004, pp. 91-112.

    Book  Google Scholar 

  14. Y. Kadoya, B.F. Dyson, and M. McLean: Metal. Mater. Trans. A, 2002, vol. 33A, pp. 2549-57.

    Article  CAS  Google Scholar 

  15. A. Gustafson and M. Hattestrand: Mater. Sci. Eng. A, 2002, vol. A333, pp. 279-86.

    CAS  Google Scholar 

  16. J. Hald: in Advances in Materials Technology for Fossil Power Plants, R. Viswanathan, W.T. Bakker, and J.D. Parker, eds., The Institute of Materials, London, UK, 2001, pp. 115–25.

  17. G. Gotz, Y. Qin, and W. Blum: in Advances in Materials Technology for Fossil Power Plants, R. Viswanathan, W.T. Bakker, and J.D. Parker, eds., The Institute of Materials, London, UK, 2001, pp. 155–63.

  18. A. Aghajani, C. Somsen, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 5093-5106.

    Article  CAS  Google Scholar 

  19. F.-G. Wei, T. Hara, and K. Tsuzaki: Phil. Mag., 2004, vol. 84, pp. 1735-51.

    Article  CAS  Google Scholar 

  20. K. Kimura, K. Sawada, H. Kushima, and K. Kubo: Int. J. Mater. Res., 2008, vol. 99, pp. 395-401.

    Article  CAS  Google Scholar 

  21. H.J. McQueen and J.J. Jonas: in Treatise on Materials Science and Technology, R.J. Arsenoult, eds., Academic Press, New York, 1975, pp. 393–493.

  22. J. Pesicka, A. Aghajani, C. Somsen, A. Hartmaier, and G. Eggeler: Scripta Mater., 2010, vol. 62, pp. 353-56.

    Article  CAS  Google Scholar 

  23. K. Suzuki, S. Kumai, H. Kushima, K. Kimura, and F. Abe: Tetsu-to-Hagane, 2000, vol. 86, pp. 52-59.

    Google Scholar 

  24. G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak: Mater. Charact., 2003, vol. 51, pp. 341-52.

    Article  CAS  Google Scholar 

  25. R. Agamennone, W. Blum, C. Gupta, and J.K. Chakravartty: Acta Mater., 2006, vol. 54, pp. 3003-14.

    Article  CAS  Google Scholar 

  26. D. Rojas, J. Garcia, O. Prat, C. Carrasco, G. Sauthof, and A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2010, vol. A527, pp. 3864-76.

    CAS  Google Scholar 

  27. C.G. Panait, A. Zielinska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.-F. Gourgues-Lorenzon, and W. Bendick: Mater. Sci. Eng. A, 2010, vol. A527, pp. 4062-69.

    CAS  Google Scholar 

  28. S. Takeuchi and A.S. Argon: J. Mater. Sci., 1976, vol. 11, pp. 1542-66.

    Article  CAS  Google Scholar 

  29. “New Grades for Waterwalls and Superheaters”, Vallourec & Mannesmann Tubes, Houston, TX, 1998.

  30. Y. Qin, G. Gotz, and W. Blum: Mater. Sci. Eng. A, 2003, vol. A341, pp. 211-15.

    CAS  Google Scholar 

  31. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227-38.

    Article  CAS  Google Scholar 

  32. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601-09.

    Article  Google Scholar 

  33. G. Wiener: Trans. ASM, 1952, vol. 44, pp. 1169-85.

    Google Scholar 

  34. P. Hellman and M. Hillert: Scand. J. Metall., 1975, vol. 4, pp. 211-19.

    CAS  Google Scholar 

  35. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15-51.

    Google Scholar 

  36. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275-89.

    Article  CAS  Google Scholar 

  37. G. Gottstein: Physical Foundations of Materials Science, Springer, Berlin, Germany, 2004.

    Google Scholar 

  38. T. Gladman: Proc. Roy. Soc. Lond., 1966, vol. 294A, pp. 298-309.

    Google Scholar 

  39. E. Hornbogen and U. Koster: in Recrystallization of Metallic Materials, F. Haessner, eds., Verlag, Stuttgart, Germany, 1978, pp. 159-94.

  40. K. Koul and F.B. Pickering: Acta Metall., 1982, vol. 30, pp. 1303-08.

    Article  CAS  Google Scholar 

  41. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913-24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Federal Agency for Science and Innovations, Russia, under grant number 02.740.11.5050. The authors are grateful to Dr. V. Skorobogatyh and to Dr. I. Schenkova, Central Research Institute for Machine-Building Technology, for supplying the test material, to Prof. A. Solonin, National University of Science and Technology (MISIS), for ThermoCalc calculations, and to the personnel of Joint Research Center, Belgorod State University, for their assistance with an instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Dudko.

Additional information

Manuscript submitted October 9, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudko, V., Belyakov, A., Molodov, D. et al. Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep. Metall Mater Trans A 44 (Suppl 1), 162–172 (2013). https://doi.org/10.1007/s11661-011-0899-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0899-1

Keywords

Navigation