Skip to main content
Log in

Correlation of Surface Roping with Through-Thickness Microtextures in an AA6xxx Sheet

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Strain-induced surface roughness was quantitatively correlated with microtexture spatial distributions from the surface to the midthickness of a strongly roping AA6016 sheet. The microtexture variations through the sheet were measured by acquiring a series of large area electron backscatter diffraction (EBSD) scans at intervals of about the grain size. The orientations of the different layers were translated into out-of-plane strains using a crystal plasticity model for comparison with the surface roping. The spatial distributions (particularly the characteristic wavelengths) of the microtexture layers were determined by areal auto-correlation functions, and quantitatively compared to the surface appearance by correlation coefficients. The results show that texture banding of Cube/Goss components along the rolling direction is present from the surface to midthickness but with significant variations from one grain layer to another. The wavelength correlation coefficient exhibits a maximum at about 55 μm, or 2 grain thicknesses, below the surface. It is shown that the spatial distribution of Cube/Goss components of the first three or four surface grain layers plays an important role in strong roping of AA6016 sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R. Wright: Metall. Trans., 1972, vol. 3, pp. 83–91.

    Article  CAS  Google Scholar 

  2. R.D. Knutsen: Mater. Sci. Forum, 2007, vol. 550, pp. 65–74.

    Article  CAS  Google Scholar 

  3. H.-J. Shin, J.-K. An, S.H. Park, and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 4693–4706.

    Article  CAS  Google Scholar 

  4. O. Engler, M.Y. Huh, and C. Tomé: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3127–39.

    Article  CAS  Google Scholar 

  5. P.D. Wu, H. Jin, Y. Shi, and D.J. Lloyd: Mater. Sci. Eng., A, 2006, vol. 423, pp. 300–05.

    Article  Google Scholar 

  6. A. Beaudoin, J. Bryant, and D. Korzekwa: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2323–32.

    Article  CAS  Google Scholar 

  7. G.J. Baczynski, R. Guzzo, M.D. Ball, and D.J. Lloyd: Acta Mater., 2000, vol. 48, pp. 3361–76.

    Article  CAS  Google Scholar 

  8. M.R. Stoudt and R. Ricker: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2883–89.

    Article  CAS  Google Scholar 

  9. P.D. Wu, D.J. Lloyd, A. Bosland, H. Jin, and S.R. MacEwen: Acta Mater., 2003, vol. 51, pp. 1945–57.

    Article  CAS  Google Scholar 

  10. H. Jin and D.J. Lloyd: Mater. Sci. Eng., 2005, vol. 43, pp. 112–19.

    Google Scholar 

  11. Y.S. Choi, H.R. Piehler, and A.D. Rollett: Mater. Characterization, 2007, vol. 58, pp. 901–08.

    Article  CAS  Google Scholar 

  12. T.A. Bennett, R.H. Petrov, and L. Kestens 2009 Scripta Mater. 61:733–36.

    Article  CAS  Google Scholar 

  13. R. Becker: Acta Mater., 1998, vol. 46, pp. 1383–401.

    Article  Google Scholar 

  14. P.D. Wu and D.J. Lloyd: Acta Mater., 2004, vol. 52, pp. 1785–98.

    Article  CAS  Google Scholar 

  15. P.S. Lee, H.R. Piehler, B.L. Adams, G. Jarvis, H. Hampel, and A.D. Rollett: J. Mater. Process. Technol., 1998, vols. 80–81, pp. 315–19.

    Article  Google Scholar 

  16. H. Jin, P.D. Wu, M.D. Ball, and D.J. Lloyd: Mater. Sci. Technol., 2005, vol. 21, pp. 419–28.

    Article  CAS  Google Scholar 

  17. M. Kamaya, J. Quinta Da Fonseca, L.M. Li, and M. Peuss: Appl. Mech. Mater., 2007, vols. 7–8, pp. 173–79.

    Article  Google Scholar 

  18. A. Guillotin, G. Guiglionda, C. Maurice, and J.H. Driver: Mater. Characterization, 2010, vol. 61, pp. 1119–25.

    Article  CAS  Google Scholar 

  19. P.D. Wu, D.J. Lloyd, and S.R. MacEwen: Scripta Mater., 2003, vol. 48, pp. 1243–48.

    Article  CAS  Google Scholar 

  20. S. Kusters, M. Seefeldt, and P. Van Houtte: Ceram. Trans., 2008, vol. 200, pp. 731–42.

    Google Scholar 

  21. P.S. Lee, G. Jarvis, A.D. Rollett, H.R. Piehler, and B.L. Adams: Proc. Automotive Alloy 1999, TMS, Warrendale, PA, 2000, pp. 161–69.

    Google Scholar 

  22. Y.S. Choi: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2001.

  23. A.W.F. Smith: Ph.D. Thesis, Manchester University, Manchester, UK, 2002.

  24. Y.S. Choi, A.D. Rollett, and H.R. Piehler: Mater. Trans., 2006, vol. 47, pp. 1313–16.

    Article  CAS  Google Scholar 

  25. A. Guillotin, G. Guiglionda, C. Maurice, and J.H. Driver: Proc. ICAA12, Yokohama, Japan, Sept. 2010, Japan Institute of Light Metals, Tokyo, Japan, 2010 pp. 113–18.

Download references

Acknowledgments

The support of the French “Fonds Unique Interministériel” and Conseil Général de la Loire to this part of the project “High formability automotive aluminium sheet for lightweight automotive” within the framework of the “Pôle de Compétitivité” ViaMéca is gratefully acknowledged. Alban Guillotin thanks the Alcan Research Centre at Voreppe for the provision of a Ph.D. Cifre scholarship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Driver.

Additional information

Manuscript submitted September 3, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillotin, A., Guiglionda, G., Maurice, C. et al. Correlation of Surface Roping with Through-Thickness Microtextures in an AA6xxx Sheet. Metall Mater Trans A 42, 1919–1924 (2011). https://doi.org/10.1007/s11661-010-0601-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0601-z

Keywords

Navigation