Skip to main content
Log in

Measuring Grain Junction Angles in Discretized Microstructures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain junction angles control microstructural morphology and evolution, but because they are difficult to measure, they are reported rarely. We have developed a method, based on the optimization of the Pearson’s correlation coefficient, to measure grain junction angles in planar discretized microstructures without converting or remeshing the original data. We find that the grain junction angle distribution of equiaxed, relatively isotropic, three-dimensional (3D) microstructures is a Gaussian distribution centered about 120 deg, with a larger width than predicted primarily because of boundary energy anisotropy. Short boundary segments, which occur primarily in sections of 3D microstructures, cause anomalous peaks in the grain junction angle distribution that provide a marker for sample dimensionality. The grain junction angle distribution is a characterization metric for digitized microstructures, revealing the effects of grain boundary energy anisotropy, simulation parameters, and dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.S. Smith: Grain Shapes and Other Metallurgical Applications of Topology, ASM, Cleveland, OH, 1952.

    Google Scholar 

  2. C. Herring: The Use of Classical Macroscopic Concepts in Surface Energy Problems, University of Chicago Press, Chicago, IL, 1952.

    Google Scholar 

  3. D. Harker and E.R. Parker: Trans. AIME, 1945, vol. 34, pp. 156-201.

    Google Scholar 

  4. B.L. Adams, S. Ta’asan, D. Kinderlehrer, I. Livshits, D.E. Mason, C.-T. Wu, W.W. Mullins, G.S. Rohrer, A.D. Rollett, and D.M. Saylor: Interface Sci., 1999, vol. 7, pp. 321-38.

    Article  CAS  Google Scholar 

  5. S. Chhabra, P. Chhillar, and S. Sangal: Prakt. Metallogr-Pr M., 2003, vol. 40, pp. 85-97.

    CAS  Google Scholar 

  6. S. Chhabra, S. Sangal, and M.N. Mungole: J. Microsc., 2004, vol. 215, pp. 62-66.

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  7. H. Hu and C.S. Smith: Acta Metall. Mater., 1956, vol. 4, pp. 638-46.

    Article  CAS  Google Scholar 

  8. D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3675-86.

    Article  CAS  Google Scholar 

  9. D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3663-74.

    Article  CAS  Google Scholar 

  10. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15-51.

    Google Scholar 

  11. V. Thaveeprungsriporn, P. Sinsrok, and D. Thong-Aram: Scripta Mater., 2001, vol. 44, pp. 67-71.

    Article  CAS  Google Scholar 

  12. S.M. Mahadevan and D. Casasent: Ultramicroscopy, 2003, vol. 96, pp. 153-62.

    Article  CAS  PubMed  Google Scholar 

  13. G.S. Rohrer: Personal communication, June 23, 2009.

  14. J.L. Rodgers and W.A. Nicewander: Amer. Stat., 1988, vol. 42, pp. 59-66.

    Article  Google Scholar 

  15. M. Anderson, G. Grest, and D. Srolovitz: Phil. Mag. B, 1989, vol. 59, pp. 293-329.

    Article  Google Scholar 

  16. M. Anderson, D. Srolovitz, G. Grest, and P. Sahni: Acta Metall. Mater., 1984, vol. 32, pp. 783-91.

    Article  CAS  Google Scholar 

  17. E. Holm, J.A. Glazier, D. Srolovitz, and G. Grest: Phys. Rev. A, 1991, vol. 43, pp. 2662-68.

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC0494AL85000. This work was supported by Sandia’s Laboratory Directed Research and Development program and by the U.S. Department of Energy, Office of Basic Energy Sciences core program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Holm.

Additional information

Manuscript submitted April 6, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandross, M., Holm, E.A. Measuring Grain Junction Angles in Discretized Microstructures. Metall Mater Trans A 41, 3018–3025 (2010). https://doi.org/10.1007/s11661-010-0355-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0355-7

Keywords

Navigation