Skip to main content
Log in

Effect of Friction Stir Processing on Microstructure and Tensile Properties of an Investment Cast Al-7Si-0.6Mg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) is emerging as a promising tool for microstructural modification. The current study assesses the effects of FSP on the microstructure and mechanical properties of an investment cast Al-7Si-Mg alloy. FSP eliminates porosity and significantly refines eutectic Si particles. The extent of particle refinement varied with changes in processing conditions. A high tool rotation rate and a low-to-intermediate tool traverse speed generated a higher volume fraction of finer particles. Tensile ductility changed significantly as a result of FSP, whereas ultimate tensile strength improved only marginally. Yield strength was similar in both cast and FSP samples under various heat-treated conditions, with the highest value obtained after a T6 heat treatment. Furthermore, FSP caused significant grain refinement in the stir zone, subsequently transforming into very coarse grains as abnormal grain growth occurred during solution treatment at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. D.L. Zhang and L. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983-91.

    Article  CAS  ADS  Google Scholar 

  2. T. Din and J. Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 644-50.

    CAS  Google Scholar 

  3. Y.B. Yu, P.Y. Song, S.S. Kim, and J.H. Lee: Scripta Mater., 1999, vol. 41, pp. 767-71.

    Article  CAS  Google Scholar 

  4. J. Jorstad and W. Rasmussen: Aluminum Casting Technology, 2nd D.L. Zalensas, ed., AFS Inc., Schaumburg, IL, 1993, p. 77.

    Google Scholar 

  5. S. Kumai, J. Hu, Y. Higo, and S. Nunomura: Acta. Mater., 1996, vol. 44, pp. 2249-57.

    Article  CAS  Google Scholar 

  6. B. Zhang, D.R. Poirier, and W. Chen: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2659-66.

    Article  CAS  Google Scholar 

  7. M.E. Seniw, J.G. Conley, and M.E. Fine: Mater. Sci. Eng. A, 2000, vol. A285, pp. 43-48.

    CAS  Google Scholar 

  8. G. Atxaga, A. Pelayo, and A.M. Irisarri: Mater. Sci. Technol., 2001, vol. 17, pp. 446-50.

    Article  CAS  Google Scholar 

  9. K.T. Kashyap, S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Technol., 1993, vol. 9, pp. 189-203.

    CAS  Google Scholar 

  10. L. Wang and S. Shivkumar: Z. Metallkd., 1995, vol. 86, pp. 441-45.

    CAS  Google Scholar 

  11. T.J. Hurley and R.G. Atkinson: Trans. Am. Foundry Soc., 1985, vol. 91, pp. 291-96.

    Google Scholar 

  12. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Patent UK 9125978.8, 1991.

  13. Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3323-36.

    Article  CAS  ADS  Google Scholar 

  14. M.L. Santella, T. Engstrom, D. Storjohann, and T.Y. Pan: Scripta Mater., 2005, vol. 53, pp. 201-06.

    Article  CAS  Google Scholar 

  15. K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki: Mater. Sci. Eng. A, 2006, vol. 437, pp. 274-80.

    Article  Google Scholar 

  16. Z.Y. Ma, A.L. Pilchak, M.C. Juhas, and J.C. Williams: Scripta Mater., 2008, vol. 58, pp. 361-66.

    Article  CAS  Google Scholar 

  17. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642-58.

    Article  CAS  ADS  Google Scholar 

  18. Y.J. Kwon, N. Saito, and I. Shigematsu: J. Mater. Sci. Lett., 2002, vol. 21, pp. 14737-6.

    Article  CAS  Google Scholar 

  19. Y.S. Sato, M. Urata, and H. Kokawa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 625-35.

    Article  ADS  Google Scholar 

  20. W.J. Arbegast: Hot Deformation of Aluminum Alloys III, ed. Z. Jin, TMS, Warrendale, PA, 2003, pp. 313–27.

  21. H. Schmidt, J. Hattel, and J. Wert: Modelling Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 143-57.

    Article  ADS  Google Scholar 

  22. S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Forum, 1996, vol. 217-22, pp. 207-12.

    Article  Google Scholar 

  23. Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887-99.

    Article  CAS  ADS  Google Scholar 

  24. L. Backurud, G. Chai, and J. Tamminen: Solidification Characteristics of aluminum Alloys, AFS/SKANAluminum, Des Plaines, IL, 1990, p. 128.

    Google Scholar 

  25. Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Mater. Sci. Eng. A, 2006, vol. 433, pp. 269-78.

    Article  Google Scholar 

  26. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Taylor and Francis, New York, NY, 1992.

    Google Scholar 

  27. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, UK, 2002.

    Google Scholar 

  28. J-Q. Su, T.W. Nelson, and C.J. Sterling: Scripta Mater., 2005, vol. 52, pp. 135-40.

    Article  CAS  Google Scholar 

  29. K.V. Jata and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 743-49.

    Article  CAS  Google Scholar 

  30. J-Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney: Acta Mater., 2003, vol. 51, pp. 713-29.

    Article  CAS  Google Scholar 

  31. R.W. Fonda, J.F. Bingert, and K.J. Colligan: Scripta Mater., 2004, vol. 51, pp. 243-48.

    Article  CAS  Google Scholar 

  32. P.B. Prangnell and C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179-92.

    Article  CAS  Google Scholar 

  33. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese: Scripta Mater., 2003, vol. 48, pp. 1451-55.

    Article  CAS  Google Scholar 

  34. J-Q. Su, T.W. Nelson, and C.J. Sterling: J. Mater. Res., 2003, vol. 18, pp. 1757-60.

    Article  CAS  ADS  Google Scholar 

  35. J-Q. Su, T.W. Nelson, and C.J. Sterling: Phil. Mag., 2006, vol. 86, pp. 1-24.

    Article  CAS  ADS  Google Scholar 

  36. M. Karlsen, S. Tangen, J. Hjelen, O. Frigarrd, and O. Grong: 3 rd Int. FSW Symp., Awaji Island, Japan, 2001.

  37. R.S. Mishra, R.K. Islamgaliev, T.W. Nelson, Y. Hovanski, and M.W. Mahoney: Friction Stir Welding and Processing, TMS, New York, NY, 2001.

    Google Scholar 

  38. ASM: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, ASM INTERNATIONAL, Materials Park, OH, 1990.

  39. D. Apelian, S. Shivkumar, and G. Sigworth: Trans. Am. Foundry Soc., 1989, pp. 727–42.

  40. G.E. Totten and D.S. MacKenzie: Handbook of Aluminum, vol. 1, Marcel Dekker, New York, NY, 2003.

    Google Scholar 

  41. S. Shivkumar, C. Keller, and D. Apelian: Trans. Am. Foundry Soc., 1990, pp. 905–11.

Download references

Acknowledgments

This work was performed under the NSF-IUCRC for Friction Stir Processing. Additional support is acknowledged from NSF-IIP (0531019), General Motors, and Friction Stir Link for the Missouri S&T site. This report was prepared as an account of work sponsored by an agency of the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv S. Mishra.

Additional information

Manuscript submitted September 30, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jana, S., Mishra, R.S., Baumann, J.A. et al. Effect of Friction Stir Processing on Microstructure and Tensile Properties of an Investment Cast Al-7Si-0.6Mg Alloy. Metall Mater Trans A 41, 2507–2521 (2010). https://doi.org/10.1007/s11661-010-0324-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0324-1

Keywords

Navigation