Skip to main content
Log in

Cyclic Deformation of Advanced High-Strength Steels: Mechanical Behavior and Microstructural Analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. Y. Sakuma, O. Matsumura, H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98

    ADS  CAS  Google Scholar 

  2. R.G. Davies: Metall. Trans. A, 1978, vol. 9A, pp. 41–52

    ADS  CAS  Google Scholar 

  3. M.S. Rashid: in Formable HSLA and Dual-Phase Steels, A.T. Davenport, ed., TMS AIME, Warrendale, PA, 1979, vol. 244, pp. 1–24

  4. O. Matsumura, Y. Sakuma, H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06

    Article  CAS  Google Scholar 

  5. G.R. Speich, V.A. Demarest: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28

    ADS  Google Scholar 

  6. W.W. Gerberich, P.L Hemmings, M.D. Merz, V.F. Zackay: Trans. ASM, 1968, vol. 61, pp. 834–47

    Google Scholar 

  7. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53

    CAS  Google Scholar 

  8. V.F. Bhandarkar, V.F. Zackay, E.R. Parker: Metall. Trans., 1972, vol. 3, pp. 2619–31

    Article  CAS  Google Scholar 

  9. J. Johansson, M. Oden: Metall. Trans. A, 2000, vol. 31A, pp. 1557–70

    Article  CAS  Google Scholar 

  10. B. Yan and D. Urban: “Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications (Phase I and Phase II),” AISI/DOE Technology Roadmap Program Report, AISI, Washington, DC, Jan. 2003.

  11. T. Yokoi, M. Takahashi, and N. Ikenaga: SAE Technical Paper 2001-01-0042, SAE, Warrendale, PA, 2002

  12. A.M. Sherman and R.G. Davies: Int. J. Fatigue, 1981, Jan., pp. 36–40

  13. S.R. Mediratta, V. Ramaswamy, and P. Rama Rao: Int. J. Fatigue, 1985, Apr., pp. 101–06

  14. H.J. Roven, E. Nes: Acta Metall. Mater., 1991, vol. 39 (8), pp. 1719–33

    Article  CAS  Google Scholar 

  15. T. Kruml, J. Polak: Mater. Sci. Eng., 2001, vol. A319–A321, pp. 564–68

    Google Scholar 

  16. K. Basu, M. Das, D. Bhattacharjee, P.C. Chakraborti: Mater. Sci. Technol., 2007, vol. 23 (11), pp. 1278–84

    Article  CAS  Google Scholar 

  17. K. Sugimoto, M. Kobayashi, S. Yasuki, S. Hashimoto: Mater. Trans., JIM, 1995, vol. 36, pp. 632–38

    CAS  Google Scholar 

  18. K. Sugimoto, M. Kobayashi, H. Matsushima, S. Hashimoto: Trans. Jpn. Soc. Mech. Eng. A, 1995, vol. 61–581, pp. 80–86

    Google Scholar 

  19. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma: Metall. Trans. A, 2004, vol. 35A, pp. 2331–41

    Article  CAS  Google Scholar 

  20. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., London, 1978, pp. 411–15

    Google Scholar 

  21. M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29 (8), pp. 1011–16

    Article  CAS  Google Scholar 

  22. P.B. Hirsch, R.B. Nicholson, A. Howie, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, Butterworth and Co., London, 1965, pp. 51–54

    Google Scholar 

  23. P.M. Kelly: Met. Forum, 1982, vol. 5 (1), pp. 13–23

    CAS  Google Scholar 

  24. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1996, p. 30

    Google Scholar 

  25. I. Alvarez-Armas, M.C. Marinelly, J.A. Malarria, S. Degallaix, A.F. Armas: Int. J. Fatigue, 2007, vol. 29, pp. 758–64

    Article  CAS  Google Scholar 

  26. Z.Z. Hu, M.L. Ma, Y.Q. Liu, J.H. Liu: Int. J. Fatigue, 1997, vol. 19, pp. 641–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the ARC linkage and federation fellows programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy B. Hilditch.

Additional information

Manuscript submitted May 11, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilditch, T.B., Timokhina, I.B., Robertson, L.T. et al. Cyclic Deformation of Advanced High-Strength Steels: Mechanical Behavior and Microstructural Analysis. Metall Mater Trans A 40, 342–353 (2009). https://doi.org/10.1007/s11661-008-9732-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9732-x

Keywords

Navigation