Skip to main content
Log in

Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser-engineered net shaping (LENS) is a rapid direct manufacturing process. The LENS process can be analyzed as a sequence of discrete events, given that it is a layer-by-layer process. The thermal history associated with the LENS process involves numerous reheating cycles. In this article, the thermal behavior during laser deposition with LENS is simulated numerically by using the alternate-direction explicit (ADE) finite difference method (FDM). The simulation results showed that deposited material experiences a significant rapid quenching effect during the initial stages of deposition and can attain a very high cooling rate. With an increase in deposit thickness, the rapid quenching effect decreases and eventually disappears. The effects of the processing parameters on the thermal behavior of deposited materials were also simulated and analyzed. The objective of this study is to provide insight into the thermal history during the LENS process, where the ability to correlate process parameters to microstructural evolution is a motivating force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. LENS is a trademark of Sandia National Laboratories, and is commercialized by Optomec, Inc., Albuquerque, NM.

References

  1. C.L. Atwood, M.L. Griffith, L.D. Harwell, D.L. Greene, D.E. Reckaway, M.T. Ensz, D.M. Keicher, M.E. Schlienger, J.A. Romero, M.S. Oliver, F.P. Jeantette, and J.E. Smugeresky: Sandia Report SAND99-0739, Sandia National Laboratory, Albuquerque, NM, 1999, pp. 1–30

  2. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, D.V. Nelson: J. Mater. Des., 1999, vol. 20, pp. 107–13

    Google Scholar 

  3. M.L. Griffith, M.T. Ensz, J.D. Puskar, C.V. Robino, J.A. Brooks, J.A. Philliber, J.E. Smugeresky, and W.H. Hofmeister: Proc. Materials Research Society Symp., Materials Research Society, Pittsburgh, PA, 2000, vol. 625, pp. 9–20.

  4. W. Hofmeister, M. Griffith, M. Ensz, J. Smugeresky: JOM, 2001, vol. 53, pp. 30–34

    Article  CAS  Google Scholar 

  5. W. Hofmeister, M. Wert, J. Smugeresky, J.A. Philliber, M. Griffith, and M. Ensz: JOM, 1999, vol. 51, p. 7, JOM-e online at http://www.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.html.

  6. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, and D.V. Nelson: Proc. Solid Freeform Fabrication Symp., The University of Texas at Austin, Austin, TX, 1998, pp. 89–97

  7. W. Wei, Y. Zhou, R.Q. Ye, D. Lee, J.E. Craig, J.E. Smugeresky, and E.J. Lavernia, in Proceedings of the 2002 Int. Conf. on Metal Powder Deposition for Rapid Manufacturing, D. Keicher, J.W. Sears, and J.E. Smugeresky, eds., MPIF, Princeton, NJ, 2002, pp. 128–35.

  8. R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, E.J. Lavernia: Mater. Sci. Eng. A, 2006, vol. 428, pp. 47–53

    Article  Google Scholar 

  9. B. Zheng, Y. Lin, Y. Zhou, J.E. Smugeresky, E.J. Lavernia: TMS Lett., 2005, vol. 4, pp. 113–14

    Google Scholar 

  10. W.M. Steen: Laser Mater. Processing, 3rd ed., Springer-Verlag London Limited, London, 2003, pp. 64–67

    Google Scholar 

  11. M. Gremaud, J.D. Wagnière, A. Zryd, W. Kurz: Surf. Eng., 1996, vol. 12, pp. 251–59

    CAS  Google Scholar 

  12. W. Kurz, C. Bezençon, M. Gaumann: Sci. Technol. Adv. Mater., 2001, vols. 2–3, pp. 185–91

    Article  Google Scholar 

  13. M.N. Özişik: Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton, FL, 1994, pp. 296–97

    Google Scholar 

  14. H.Z. Barakat, J.A. Clark: J. Heat Transfer, 1966, vol. 11, pp. 421–27

    Google Scholar 

  15. Q. Xu, V.V. Gupta, E.J. Lavernia: Metall. Mater. Trans. B, 1999, vol. 30, pp. 527–39

    Article  Google Scholar 

  16. B. Kang, Z. Zhao, D. Poulikakos: J. Heat Transfer, 1994, vol. 116, pp. 436–45

    Article  CAS  Google Scholar 

  17. G.X. Wang, E.F. Matthys: Int. J. Heat Mass Transfer, 1992, vol. 35, pp. 141–53

    Article  CAS  Google Scholar 

  18. E.J. Lavernia, E. Gutierrez, J. Szekely, N.J. Grant: Int. J. Rapid Solidification, 1988, vol. 4, pp. 89–124

    CAS  Google Scholar 

  19. E.S. Lee, S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231–43

    Article  CAS  Google Scholar 

  20. E. Vogt: Int. J. Rapid Solidification, 1987, vol. 3, pp. 131–46

    CAS  Google Scholar 

  21. V.R. Voller and M. Cross: in Computational Techniques in Heat Transfer, R.W. Lewis, K. Morgan, J.A. Johnson, and W.R. Smith, eds., Pineridge Press, Swansea, United Kingdom, 1985, vol. 1, pp. 245–75

  22. L.E. Goodrich: Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 615–21

    Article  Google Scholar 

  23. C. Bonacina, G. Comini, A. Fasano, M. Primicero: Int. J. Heat Mass Transfer, 1973, vol. 16, pp. 1825–32

    Article  Google Scholar 

  24. E.A. Brandes: Smithells Metal Reference Book, 6th ed., Butterworth and Co., London, 1983, pp. 11–40

    Google Scholar 

  25. R.E. Bolz, G.L. Tuve: Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Boca Raton, FL, 1973, pp. 317–18

    Google Scholar 

  26. B. Zheng, L. Sun, W. Zhu: J. USTB/MMM, 1999, vol. 6 (4), pp. 292–96

    Google Scholar 

  27. J.A. Brooks, C.V. Robino, T. Headley, S. Goods, R.C. Dykhuizen, and M.L. Griffith: Proc. Solid Freeform Fabrication Symp., University of Texas, Austin, TX, Aug. 1999, pp. 375–82

  28. W.P. Liu, J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. DMI-0423695 and by NASA Marshall under Contract No. NNM06AB11C. Work at Sandia National Laboratories is supported by the United States Department of Energy under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zheng.

Additional information

Manuscript submitted October 22, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, B., Zhou, Y., Smugeresky, J. et al. Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations. Metall Mater Trans A 39, 2228–2236 (2008). https://doi.org/10.1007/s11661-008-9557-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9557-7

Keywords

Navigation