Skip to main content
Log in

Effects of Substitutional Solute Accumulation at α/γ Boundaries on the Growth of Ferrite in Low Carbon Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth of proeutectoid ferrite in Fe-C-X alloys containing ∼3 at. pct X, where X is Mn, Ni, Cr, and Si, is re-examined in terms of solute drag using the Hillert–Sundman theory. The differences of measured growth rates from those calculated under paraequilibrium (PE) reported previously were accounted for taking into account not only the binding energy of substitutional solute with the boundary, but also the transformation temperature of the alloy. The ferrite growth in quaternary Fe-C-Mn-Si alloys was modeled using the stationary-interface approximation for the matrix of finite grain size. The principal features of growth in these alloys, i.e., initial fast unpartitioned growth and subsequent slow partitioned growth with a high level of carbon supersaturation in austenite, were reproduced incorporating cosegregation of Mn and Si at the boundary. Thus, a strong Mn-Si interaction is likely to enhance accumulation of these elements at the boundary and yield the growth behavior that resembles the growth stasis in Fe-C-Mo alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It is noted that the growth rates calculated under local equilibrium become greater than those under PE at lower temperatures. This occurs due to a peculiar shape of the (α + γ) two-phase field in the isothermal section of the Fe-C-Cr phase diagram.[39] This is a direct consequence of the fact that Cr is an austenite stabilizer at lower concentrations and becomes a ferrite stabilizer at higher concentrations.[40]

  2. The E i values taken from experiment (Table II) include the terms of self-interaction coefficients ε i(i).

References

  1. M. Hillert: “Paraequilibrium,” Internal Report, Swedish Institute of Metals, Stockholm, 1947

  2. J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, pp. 907–16

    CAS  Google Scholar 

  3. G.R. Purdy, D.H. Weichert, J.S. Kirkaldy: Trans. TMS-AIME, 1964, vol. 230, pp. 1025–34

    CAS  Google Scholar 

  4. H.I. Aaronson, H.A. Domian: Trans. TMS-AIME, 1966, vol. 236, pp. 781–96

    CAS  Google Scholar 

  5. J.B. Gilmour, G.R. Purdy, J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 1455–64

    Article  CAS  Google Scholar 

  6. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 1077–86

    CAS  Google Scholar 

  7. K.R. Kinsman, H.I. Aaronson: Metall. Trans., 1973, vol. 4, pp. 959–67

    CAS  Google Scholar 

  8. J.R. Bradley, H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–41

    Google Scholar 

  9. M. Enomoto, H.I. Aaronson: Metall. Trans. A, 1987, vol. 18A, pp. 1547–57

    CAS  Google Scholar 

  10. M. Hillert: Scripta Mater., 2002, vol. 46, pp. 447–53

    Article  CAS  Google Scholar 

  11. K. Oi, C. Lux, G.R. Purdy: Acta Mater., 2000, vol. 48, pp. 2147–55

    Article  CAS  Google Scholar 

  12. C.R. Hutchinson, A. Fuchsmann, Y.J.M. Brechet: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1211–21

    Article  CAS  Google Scholar 

  13. A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, G.R. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1237–42

    Article  CAS  Google Scholar 

  14. M. Enomoto: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1703–10

    Article  CAS  Google Scholar 

  15. P.G. Boswell, K.R. Kinsman, G.J. Shiflet, and H.I. Aaronson: in Mechanical Properties and Phase Transformations in Engineering Materials, S.D. Antolovich, R.O. Ritchie, and W.W. Gerberich, eds., TMS, Warrendale, PA, 1986, pp. 445–66

  16. G.J. Shiflet, H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1413–32

    CAS  Google Scholar 

  17. W.T. Reynolds Jr., F.Z. Li, C.K. Shui, H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63

    CAS  Google Scholar 

  18. K.M. Wu, M. Kagayama, M. Enomoto: Mater. Sci. Eng., 2003, vol. A343, pp. 143–50

    CAS  Google Scholar 

  19. R.E. Hackenberg, G.J. Shiflet: Acta Mater., 2003, vol. 51, pp. 2131–47

    Article  CAS  Google Scholar 

  20. E.S. Humphreys, H.A. Fletcher, J.D. Hutchins, A.J. Garratt-Reed, W.T. Reynolds Jr., H.I. Aaronson, G.R. Purdy, G.D.W. Smith: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1223–35

    Article  CAS  Google Scholar 

  21. H.I. Aaronson, W.T. Reynolds Jr., G.R. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1187–1210.

    Article  CAS  Google Scholar 

  22. H.I. Aaronson, W.T. Reynolds Jr., G.R. Purdy: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1731–45

    Article  CAS  Google Scholar 

  23. T. Tanaka, H.I. Aaronson, M. Enomoto: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 561–80

    CAS  Google Scholar 

  24. H. Guo, G.R. Purdy, M. Enomoto, H.I. Aaronson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1721–29

    Article  CAS  Google Scholar 

  25. M. Hillert, B. Sundman: Acta Metall., 1976, vol. 24, pp. 731–43

    Article  CAS  Google Scholar 

  26. H.B. Aaron, D. Fainstein, G.R. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10

    Article  Google Scholar 

  27. R.A. Vandermeer: Acta Metall. Mater., 1990, vol. 38, pp. 2461–70

    Article  CAS  Google Scholar 

  28. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40

    Article  CAS  Google Scholar 

  29. J. Odqvist, M. Hillert, J. Ågren: Acta Mater., 2002, vol. 50, pp. 3211–25.

    Article  CAS  Google Scholar 

  30. G.R. Purdy, Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74

    Article  CAS  Google Scholar 

  31. M. Enomoto, M. Kagayama, N. Maruyama, and T. Tarui: in Proc. Int. Conf. on Solid-Solid Phase Transformations’99, M. Koiwa, K. Otsuka, and T. Miyazaki, eds., The Japan Institute of Metals, Sendai, 1999, pp. 1453–50

  32. M. Hillert: in H.I. Aaronson, ed., Phase Transformations, ASM, Metals Park, OH, 1970, pp. 181–218

    Google Scholar 

  33. M. Enomoto, H.I. Aaronson: Scripta Metall., 1985, vol. 19, pp. 1–3

    Article  CAS  Google Scholar 

  34. E.D. Hondros: in Precipitation Processes in Solids, K.C. Russell, and H.I. Aaronson, eds., TMS, Warrendale, PA, 1978, pp. 1–30

  35. M. Enomoto, C.L. White, H.I. Aaronson: Metall. Trans. A, 1988, vol. 19A, pp. 1807–18

    CAS  Google Scholar 

  36. M. Enomoto, N. Nojiri, Y. Sato: Mater. Trans. JIM, 1994, vol. 35, pp. 859–67

    CAS  Google Scholar 

  37. J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: in Hardenability Concepts with Applications to Steel, D.V. Doane, and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 82–125

  38. G. Inden and C.R. Hutchinson: in Austenite Formation and Decomposition, B. Damm and M.J. Merwin, eds., TMS, Warrendale, PA, 2003, pp. 65–79

  39. B. Uhrenius: in Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS, Warrendale, PA, 1978, pp. 28–81

  40. M. Enomoto: Trans. ISIJ, 1988, vol. 28, pp. 826–35

    CAS  Google Scholar 

  41. C.R. Hutchinson, H.S. Zurob, Y. Brechet: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1711–20

    Article  CAS  Google Scholar 

  42. C.H.P. Lupis: Chemical Thermodynamics of Materials, North-Holland, New York, 1983, pp. 235–62

  43. J. Crank: The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1975, pp. 44–68

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of the ALEMI (Alloying Effects on Migrating Phase Interfaces) group for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

Manuscript submitted September 26, 2006.

Appendix

Appendix

Stationary interface approximation for the growth of ferrite in a finite austenite matrix

For the diffusion fields in ferrite and austenite (Figure 1), the solution is given by an infinite series as[43]

$$ \frac{{x_{i} - x{}_{i}^{0} }} {{x_{i} ^{\alpha } - x_{i} ^{0} }} = 1 - \frac{\pi } {4}{\sum\limits_{n = 0}^\infty {\frac{{{\left( { - 1} \right)}^{n} }} {{2n + 1}}{\text{ }}\exp {\text{ }}{\left[ { - \frac{{D_{i} ^{\alpha } {\left( {2n + 1} \right)}^{2} \pi ^{2} t}} {{4S^{2} }}} \right]}{\text{ }}\cos {\text{ }}{\left[ {{\left( {n + \frac{1} {2}} \right)}\pi \frac{s} {S}} \right]}} } $$
(A1)

and

$$ \frac{{x_{i} - x{}_{i}^{0} }} {{x_{i} ^{\gamma } - x_{i} ^{0} }} = 1 - \frac{\pi } {4}{\sum\limits_{n = 0}^\infty {\frac{1} {{2n + 1}}{\text{ }}\exp {\text{ }}{\left[ { - \frac{{D_{i} ^{\gamma } {\left( {2n + 1} \right)}^{2} \pi ^{2} t}} {{4{\left( {d - S} \right)}^{2} }}} \right]}{\text{ }}\sin {\text{ }}{\left[ {{\left( {n + \frac{1} {2}} \right)}\pi \frac{{s - S}} {{d - S}}} \right]}} } $$
(A2)

respectively, where x i is the solute concentration (or mole fraction) in the matrix, and x α i and x γ i are the concentrations at the boundary in ferrite and austenite. The term x 0 i is the bulk concentration; \( D_{i} ^{\nu } \) (ν = α or γ) is the solute diffusivity; d is half the grain size; s is the distance; and S is the location of the boundary at the real time t, which is determined by the condition of mass balance in ferrite and austenite as

$$ {\int\limits_0^S {{\left( {x_{i} ^{0} - x_{i} } \right)}ds = {\int\limits_S^d {{\left( {x_{i} - x_{i} ^{0} } \right)}ds} }} } $$
(A3)

Performing integration with respect to s, Eq. [A3] becomes

$$ {\left( {1 - \Omega _{i} } \right)}S\phi _{\alpha } {\left( t \right)} = \Omega _{i} {\left( {d - S} \right)}\phi _{\gamma } {\left( t \right)} $$
(A4)

where Ω i = (x γ i x 0 i )/(x γ i x α i ) is the supersaturation of solute i, and

$$ \phi _{\gamma } {\left( t \right)} = 1 - \frac{8} {{\pi ^{2} }}{\sum\limits_{n = 0}^\infty {\frac{1} {{{\left( {2n + 1} \right)}^{2} }}{\text{ }}\exp {\text{ }}{\left[ { - \frac{{D_{i} ^{\gamma } {\left( {2n + 1} \right)}^{2} \pi ^{2} t}} {{4{\left( {d - S} \right)}^{2} }}} \right]}} } $$
(A5)

and

$$ \phi _{\alpha } {\left( t \right)} = 1 - \frac{8} {{\pi ^{2} }}{\sum\limits_{n = 0}^\infty {\frac{1} {{{\left( {2n + 1} \right)}^{2} }}{\text{ }}\exp {\text{ }}{\left[ { - \frac{{D_{i} ^{\alpha } {\left( {2n + 1} \right)}^{2} \pi ^{2} t}} {{4S^{2} }}} \right]}} } $$
(A6)

Differentiating Eq. [A4] with respect to t,

$$ \begin{aligned}{} &\dot{S}{\left( {x_{i}^{0} - x_{i} ^{\alpha } } \right)}\phi _{\alpha} - S\dot{x}_{i} ^{\alpha } \phi _{\alpha } + S{\left( {x_{i} ^{0} -x{}_{i}^{\alpha } } \right)}\dot{\phi }_{\alpha } \\ & = -\dot{S}{\left( {x_{i} ^{\gamma } - x_{i} ^{0} } \right)}\phi_{\gamma } + {\left( {d - S} \right)}\dot{x}_{i} ^{\gamma } \phi_{\gamma } + {\left( {d - S} \right)}{\left( {x_{i} ^{\gamma } -x_{i} ^{0} } \right)}\dot{\phi }_{\gamma } \\\end{aligned}$$
(A7)

where

$$ \ifmmode\expandafter\dot\else\expandafter\.\fi{\phi }_{\alpha } {\left( t \right)} = \frac{{2D_{i} ^{\alpha } }} {{S^{2} }}{\left( {1 - \frac{{2\ifmmode\expandafter\dot\else\expandafter\.\fi{S}t}} {S}} \right)}{\sum\limits_{n = 0}^\infty {\exp {\text{ }}{\left[ { - \frac{{D_{i} ^{\alpha } {\left( {2n + 1} \right)}^{2} \pi ^{2} t}} {{4S^{2} }}} \right]}} } $$
(A8)

and

$$ \ifmmode\expandafter\dot\else\expandafter\.\fi{\phi }_{\gamma } {\left( t \right)} = \frac{{2D_{i} ^{\gamma } }} {{{\left( {d - S} \right)}^{2} }}{\left( {1 + \frac{{2\ifmmode\expandafter\dot\else\expandafter\.\fi{S}t}} {{d - S}}} \right)}{\sum\limits_{n = 0}^\infty {\exp {\text{ }}{\left[ { - \frac{{D_{i} ^{\gamma } {\left( {2n + 1} \right)}^{2} \pi ^{2} t}} {{4{\left( {d - S} \right)}^{2} }}} \right]}} } $$
(A9)

As described in Section II–B, when diffusion in ferrite can be neglected, one can put

$$ \phi _{\alpha } \sim 1\quad {\text{and}}\quad {\dot{\phi}} _{\alpha } \sim 0 $$

in Eqs. [A4] and [A7].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Enomoto, M. Effects of Substitutional Solute Accumulation at α/γ Boundaries on the Growth of Ferrite in Low Carbon Steels. Metall Mater Trans A 38, 1152–1161 (2007). https://doi.org/10.1007/s11661-007-9139-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9139-0

Keywords

Navigation