Skip to main content
Log in

Creep behavior of TiAl alloys with enhanced high-temperature capability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

For high-temperature applications, creep strength is of major concern, in addition to oxidation and corrosion resistance, and determines the application range of titanium aluminide alloys in competition with other structural materials. Thus, this work was aimed at identifying mechanisms of creep deformation and microstructural degradation and at developing alloying concepts with respect to an enhanced high-temperature capability. The analysis shows that dislocation climb controls deformation in the range of the intended operation temperatures. Further, complex processes of phase transformations, recrystallization, and microstructural coarsening were observed, which contribute to microstructural degradation and limit component life in long-term service. By alloying with high contents of Nb, both room- and high-temperature strength properties can be improved as Nb increases the activation energy of diffusion and increases the propensity for twinning at ambient temperature. For alloys with enhanced high-temperature capability, microalloying with carbon is also of particular use, because carbide precipitates effectively hinder dislocation motion and are thought to increase microstructural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Dimiduk: Mater. Sci. Eng. A, 1999, vol. 263, pp. 281–88.

    Article  Google Scholar 

  2. F.R.N. Nabarro and H.L. deVilliers: The Physics of Creep, Taylor and Francis, London, 1995.

    Google Scholar 

  3. H. Oikawa and K. Maruyama: Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 919–30.

    Google Scholar 

  4. B.D. Worth, J.W. Jones, and J. Allison: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2947–59.

    CAS  Google Scholar 

  5. R.W. Hayes and P.L. Martin: Acta Metall. Mater., 1995, vol. 43, pp. 2761–72.

    Article  CAS  Google Scholar 

  6. J. Beddoes, W. Wallace, and L. Zhao: Int. Mater. Rev., 1995, vol. 40, pp. 197–217.

    CAS  Google Scholar 

  7. K. Maruyama, R. Yamamoto, H. Nakakuki, and N. Fujitsuna: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 419–28.

    Google Scholar 

  8. T.A. Parthasaraty, M.G. Mendiratta, and D.M. Dimiduk: Scripta Mater., 1997, vol. 37, pp. 315–21.

    Article  Google Scholar 

  9. J.N. Wang and T.G. Nieh: Acta Mater., 1998, vol. 46, pp. 1887–1901.

    Article  CAS  Google Scholar 

  10. F. Herrouin, D.H. Hu, P. Bowen, and I.P. Jones: Acta Mater., 1998, vol. 46, pp. 4963–72.

    Article  CAS  Google Scholar 

  11. W.J. Zhang and S.C. Deevi: in Structural Intermetallics 2001, K.J. Hemker, D.M. Dimiduk, H. Clemens, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., TMS, Warrendale, PA, 2001, pp. 699–708.

    Google Scholar 

  12. R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma, and K. Ishida: Intermetallics, 2000, vol. 8, pp. 855–67.

    Article  CAS  Google Scholar 

  13. Y.-W. Kim and D.M. Dimiduk: in Structural Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 531–43.

    Google Scholar 

  14. G. Schoöck: Physica Status Solidi, 1965, vol. 8, pp. 499–507.

    Google Scholar 

  15. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progr. Mater. Sci., 1975, vol. 19, pp. 1–288.

    Article  Google Scholar 

  16. F. Appel and R. Wagner: Mater. Sci. Eng. R, 1998, vol. 22, pp. 187–268.

    Article  Google Scholar 

  17. F. Appel, U. Lorenz, M. Oehring, U. Sparka, and R. Wagner: Mater. Sci. Eng. A, 1997, vol. 233, pp. 1–14.

    Article  Google Scholar 

  18. M.F. Bartholomeusz and J.A. Wert: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2161–71.

    CAS  Google Scholar 

  19. F. Appel, U. Sparka, and R. Wagner: Intermetallics, 1999, vol. 7, pp. 325–34.

    Article  CAS  Google Scholar 

  20. U. Christoph, F. Appel, and R. Wagner: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 39–45.

    Google Scholar 

  21. J. Friedel: Les dislocations, Gauthiers-Villars, Paris, 1956.

    Google Scholar 

  22. M.A. Morris, T. Lipe, and D.G. Morris: Scripta Mater., 1996, vol. 34, pp. 1337–43.

    Article  CAS  Google Scholar 

  23. U. Fröbel and F. Appel: Acta Mater., 2002, vol. 50, pp. 3693–707.

    Article  Google Scholar 

  24. Y. Mishin and C. Herzig: Acta. Mater., 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  25. F. Appel: Mater. Sci. Eng. A, 2001, vol. 317, pp. 115–27.

    Article  Google Scholar 

  26. J.D.H. Paul, U. Sparka, and F. Appel: in Structural Intermetallics 2001, K.J. Hemker, D.M. Dimiduk, H. Clemens, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Wittenberger, eds., TMS, Warrendale, PA, 2001, pp. 403–12.

    Google Scholar 

  27. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing, Malabar, 1992.

    Google Scholar 

  28. D. Häussler, U. Messerschmidt, M. Bartsch, F. Appel, and R. Wagner: Mater. Sci. Eng. A, 1997, vol. 233, pp. 15–25.

    Article  Google Scholar 

  29. H. Inui, M.H. Oh, A. Nakamura, and M. Yamaguchi: Phil. Mag. A, 1992, vol. 66, pp. 539–55.

    CAS  Google Scholar 

  30. F. Appel and U. Christoph: Intermetallics, 1999, vol. 7, pp. 1173–82.

    Article  CAS  Google Scholar 

  31. F. Appel: Advances in Twinning, S. Ankem and C.S. Pande, eds., TMS, Warrendale, PA, 1999, pp. 171–86.

    Google Scholar 

  32. C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian: Acta Metall., 1989, vol. 37, pp. 1321–36.

    Article  CAS  Google Scholar 

  33. A. Menand, A. Huguet, and A. Nérac-Partaix: Acta Mater., 1996, vol. 44, pp. 4729–37.

    Article  CAS  Google Scholar 

  34. M. Yamaguchi, H. Inui, and K. Ito: Acta Mater., 2000, vol. 48, pp. 307–22.

    Article  CAS  Google Scholar 

  35. F. Appel, M. Oehring, and R. Wagner: Intermetallics, 2000, vol. 8, pp. 1283–312.

    Article  CAS  Google Scholar 

  36. S.C. Huang: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 299–307.

    Google Scholar 

  37. G. Chen, W.J. Zhang, Y. Wang, J. Wang, Z. Sun, Y. Wu, and L. Zhou: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 319–24.

    Google Scholar 

  38. J.D.H. Paul, F. Appel, and R. Wagner: Acta Mater., 1998, vol. 46, pp. 1075–85.

    Article  CAS  Google Scholar 

  39. F. Appel, U. Lorenz, J.D.H. Paul, and M. Oehring: in Gamma Titanium Aluminides 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 381–88.

    Google Scholar 

  40. C. Woodward, S.A. Kajihara, S.I. Rao, and D.M. Dimiduk: in Gamma Titanium Aluminides 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 49–58.

    Google Scholar 

  41. C. Herzig, T. Przeorski, M. Friesel, F. Hisker, and S. Divinski: Intermetallics, 2001, vol. 9, pp. 461–72.

    Article  CAS  Google Scholar 

  42. S. Chen, P.A. Beaven, and R. Wagner: Scripta Metall. Mater., 1992, vol. 26, pp. 1205–10.

    Article  CAS  Google Scholar 

  43. W.H. Tian, T. Sano, and M. Nemoto: Phil. Mag. A, 1993, vol. 68, pp. 965–76.

    CAS  Google Scholar 

  44. W.H. Tian and M. Nemoto: Intermetallics, 1997, vol. 5, pp. 237–44.

    Article  CAS  Google Scholar 

  45. P.I. Gouma, M.J. Mills, and Y.-W. Kim: Phil. Mag. Lett., 1998, vol. 78, pp. 59–66.

    Article  CAS  Google Scholar 

  46. P.I. Gouma, K. Subramanian, Y.-W. Kim, and M.J. Mills: Intermetallics, 1998, pp. 689–93.

  47. Y.-W. Kim and D.M. Dimiduk: in Structural Intermetallics 2001, K.J. Hemker, D.M. Dimiduk, H. Clemens, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., TMS, Warrendale, PA, 2001, pp. 625–32.

    Google Scholar 

  48. H. Nickel, N. Zheng, A. Elschner, and W. Quadakkers: Microchim. Acta, 1995, vol. 119, pp. 23–39.

    Article  CAS  Google Scholar 

  49. F. Appel, M. Oehring, J.D.H. Paul, and U. Lorenz: in Structural Intermetallics 2001, K.J. Hemker, D.M. Dimiduk, H. Clemens, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., TMS, Warrendale, PA, 2001, pp. 63–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appel, F., Paul, J.D.H., Oehring, M. et al. Creep behavior of TiAl alloys with enhanced high-temperature capability. Metall Mater Trans A 34, 2149–2164 (2003). https://doi.org/10.1007/s11661-003-0279-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0279-6

Keywords

Navigation