Skip to main content
Log in

Misfit dislocations in epitaxy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article on epitaxy highlights the following: the definition and some historical milestones; the introduction by Frenkel and Kontorowa (FK) of a truncated Fourier series to model the periodic interaction at crystalline interfaces; the invention by Frank and van der Merwe (FvdM)—using the FK model—of (interfacial) misfit dislocations as an important mechanism in accommodating misfit at epilayer-substrate interfaces; the generalization of the FvdM theory to multilayers; the application of the parabolic model by Jesser and van der Merwe to describe, for growing multilayers and superlattices, the impact of Fourier coefficients in the realization of epitaxial orientations and the stability of modes of misfit accommodation; the involvement of intralayer interaction in the latter—all features that impact on the attainment of perfection in crystallinity of thin films, a property that is so vital in the fabrication of useful uniformly thick epilayers (uniformity being another technological requirement), which also depends on misfit accommodation through the interfacial energy that function strongly in the criterion for growth modes, proposed by Bauer; and the ingenious application of the Volterra model by Matthews and others to describe misfit accommodation by dislocations in growing epilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1-D and 2-D:

one- and two-dimensional

EAM:

embedded atom method

FK:

Frenkel-Kontorowa

FM and FvdM:

Frank-van der Merwe

MA, MD, and MS:

misfit: accomodation, dislocation, strain and vernier

ML:

monolayer

KS:

Kurdjumov-Sachs

NW:

Nishiyama-Wasserman

NW-x and NW-y :

with matching in x- and y-directions

ps:

pseudomorphic

SK:

Stranksi-Krastranov

VW:

Volmer-Weber

A and B:

crystals

A0 and B0:

constants in Eqs. [34] and [38]

a :

interfacial interaction period

b and b:

natural and deformed spring lengths

a x , ay, b x , and b y :

diagonal lengths of bcc(110) and fcc(111) rhombic surface unit cells

a n and b n :

nearest-neighbor distances, r n =b n /a n

a s and a0:

lattice parameters of substrate and overlayer

b 0 :

Burgers vector of MD

c :

wave velocity of chain

c r :

reference lattice parameter

c ii :

stiffness constant

D :

in Eq. [37]

E :

energy:E AA and E BB of crystals A and B: E A and E B of crystal halves and E AB of bicrystal AB

E ij :

computed value of linear AB stack at grid point P ij =(x ij , y ij )

E MD :

of MD

E 0 :

of static chain

E(k) and K(k):

complete elliptic integrals, second and first kinds

F :

kind (incomplete)

f :

misfit: f c and f l when critical and in limit

g :

w/W

H :

Hamiltonian

H 0 :

2 πh/p

h :

thickness

h c :

critical h

K :

number grid points, l a limiting

L :

l0(1 - v2/c2)1/2

M :

mass of moving MD

M 0 :

rest mass

N :

number of chains in stack, N c when critical

p :

MD spacing, P and P 0 number atoms in p: MD when strained and unstrained

r a , r x , and r y :

ideal values of r n in KS, NW-x, and NW-y orientations

R and r0:

outer and inner cutoff radii of MD strain field

S :

surface and interface areas

t :

spring tension

UMD and U ac :

energies of formation and activation of MD

V(x) and V hk :

periodic potential and Fourier coefficients

U :

relative displacement of atoms on either side of interface

W :

overall amplitude of V(x)

α0 and β0:

angles, as shown in Fig. 5

β :

variable defined in Eq. [32]

γ :

specific surface free energy: γ 0 and γ s of overlayer and substrate, γ i of their interface, γ AB of bicyrystal AB interface

μ :

spring force constant, μ 1=μ for single chain, and μ n for stack of n chains

μ :

shear modulus: μ i , μ 0, and μ s for interface, overlayer, and substrate

v :

Poisson’s ratio

λ a :

μ A /(1 − v A )

l/λ + :

l/λ a +l/λ B

References

  1. F.C. Frank and J.H. van der Merwe: Proc. R. Soc. A, 1949, vol. A198, pp. 205–16 and 216–25.

    CAS  Google Scholar 

  2. J. Frenkel and T. Kontorowa: Phys. Z. Sowjet, 1938, vol. 13, pp. 1–10.

    CAS  Google Scholar 

  3. F.C. Frank and J.H. van der Merwe: Proc. R. Soc. A, 1949, vol. A200, pp. 125–34.

    CAS  Google Scholar 

  4. F.C. Frank and J.H. van der Merwe: Proc. R. Soc. A, 1949, vol. A200, pp. 261–68.

    Google Scholar 

  5. J.H. van der Merwe: J. Appl. Phys., 1970, vol. 41, pp. 4725–31.

    Article  Google Scholar 

  6. J.H. van der Merwe: Phil. Mag., 1982, vol. A 45, pp. 145–57.

    Google Scholar 

  7. L.A. Bruce and H. Jaeger: Phil. Mag., 1978, vol. A 38, pp. 223–40.

    Google Scholar 

  8. M.W.H. Braun: Ph.D. Thesis, University of Pretoria, Pretoria, 1987, ch. 2.

    Google Scholar 

  9. J.H. van der Merwe and M.W.H. Braun: Appl. Surf. Sci., 1985, vols. 22–23, pp. 545–55.

    Google Scholar 

  10. H. Reiss: J: Appl. Phys., 1968, vol. 39, pp. 5045–61.

    Article  Google Scholar 

  11. W.A. Jesser, J.H. van der Merwe, and P.M. Stoop: J. Appl. Phys., 1999, vol. 85, pp. 2129–39.

    Article  CAS  Google Scholar 

  12. Y.H. Lo: Appl. Phys. Lett., 1991, vol. 59, pp. 2311–13.

    Article  CAS  Google Scholar 

  13. P.M. Stoop and J.A. Snyman: Thin Solid Films, 1988, vol. 158, pp. 151–66.

    Article  CAS  Google Scholar 

  14. P.M. Stoop, J.H. van der Merwe, and M.W.H. Braun: Phil. Mag., 1991, vol. A 63, pp. 907–22.

    Google Scholar 

  15. J.H. van der Merwe, D.L. Tönsing, and P.M. Stoop: Thin Solid Films, 1994, vol. 237, pp. 297–309.

    Article  Google Scholar 

  16. J.H. van der Merwe: Phil. Mag., 1982, vol. A 45, pp. 159–70.

    Google Scholar 

  17. E. Bauer and J.H. van der Merwe: Phys. Rev. B, 1986, vol. 33, pp. 3657–71.

    Article  CAS  Google Scholar 

  18. L.C.A. Stoop and J.H. van der Merwe: Thin Solid Films, 1982, vol. 91, pp. 257–75; 1982, vol. 94, pp. 341–52; and 1982, vol. 98, pp. 65–74.

    Article  CAS  Google Scholar 

  19. J.H. van der Merwe: Proc. Phys. Soc., 1949, vol. A63, pp. 616–37.

    Google Scholar 

  20. R. Peierls: Proc. Phys. Soc., 1940, vol. 52, pp. 34–37.

    Article  Google Scholar 

  21. F.R.N. Nabarro: Proc. Phys. Soc., 1947, vol. 59, pp. 256–72.

    Article  CAS  Google Scholar 

  22. J.W. Matthews: in Epitaxial Growth, Pt. B, J.W. Matthews, ed., Academic Press, New York, NY, 1975, pp. 559–609.

    Google Scholar 

  23. J.W. Matthews: in Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland, Amsterdam, 1979, pp. 463–545.

    Google Scholar 

  24. J.H. van der Merwe and W.A. Jesser: J. Appl. Phys., 1988, vol. 63, pp. 1509–17.

    Article  Google Scholar 

  25. W.A. Jesser and J.H. van der Merwe: J. Appl. Phys., 1988, vol. 63, pp. 1928–35.

    Article  Google Scholar 

  26. E. Bauer: Z. Kristallogr., 1958, vol. 110, pp. 372–95.

    Article  CAS  Google Scholar 

  27. J.H. van der Merwe: Interface Sci., 1993, vol. 1, pp. 77–86.

    Article  Google Scholar 

  28. J.H. van der Merwe: Progr. Surf. Sci., 2001, vol. 67, pp. 365–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation in the symposium “Interfacial Dislocations: Symposium in Honor of J.H. van der Merwe on the 50th Anniversary of His Discovery,” as part of the 2000 TMS Fall Meeting, October 11–12, 2000, in St. Louis, Missouri, sponsored under the auspices of ASM International, Materials Science Critical Technology Sector, Structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Merwe, J.H. Misfit dislocations in epitaxy. Metall Mater Trans A 33, 2475–2483 (2002). https://doi.org/10.1007/s11661-002-0369-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0369-x

Keywords

Navigation