Skip to main content
Log in

Effect of precipitates on plastic anisotropy for polycrystalline aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of crystallographic texture and precipitate distribution on macroscopic anisotropy in aluminum alloys were investigated. In order to simultaneously consider the effects of crystallographic texture and precipitate distribution on macroscopic anisotropy, predictions of plastic properties were carried out using an anisotropic yield function based on the material texture and a combined isotropic-kinematic hardening rule. The input to the model was a single stress-strain curve, the crystallographic texture, and the precipitate volume fraction, shape, and habit planes. It was shown that the kinematic hardening rule, which expresses a translation of the yield surface in stress space, was a function of all the parameters describing the precipitate distribution. The model was applied to the case of an extruded and recrystallized binary Al-3 wt pct Cu alloy deformed in uniaxial compression in different directions. Excellent agreement was observed between the experimental and predicted yield stress anisotropy and the specimen cross section shape anisotropy. Gaussian distributions of grain orientations around ideal texture components typical of aluminum alloys were generated using computer simulations. These textures were combined with the isotropic-kinematic hardening rule determined for the Al-3 wt pct Cu binary alloy to theoretically assess the influence of precipitates on the r-value (the width-to-thickness plastic strain ratio in uniaxial tension) and yield stress anisotropy for aluminum sheets. It was shown that, for these textures, the precipitate distribution had the effect of reducing plastic anisotropy, in agreement with the trends generally observed in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Barlat: Mater. Sci. Eng., 1987, vol. 95, pp. 15–29.

    Article  Google Scholar 

  2. S.-H. Choi, J.-H. Cho, F. Barlat, K. Chung, J.W. Kwon, and K.H. Oh: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 377–86.

    CAS  Google Scholar 

  3. K.K. Mathur, P.R. Dawson, and U.F. Kocks: Mech. Mater., 1990, vol. 10, pp. 183–202.

    Article  Google Scholar 

  4. A.D. Rollett, D. Juul Jensen, and M.G. Stout: Proc. 13th Ris. Int. Symp. on Materials Science, S.I. Anderson et al., eds., Riso National Laboratory, Roskilde, Denmark, 1992, pp. 93–109.

    Google Scholar 

  5. F. Barlat and J. Liu: Mater. Sci. Eng., 1998, vol. A257, pp. 47–61

    CAS  Google Scholar 

  6. S.-H. Choi and F. Barlat: Proc. 4th Int. Conf. on Constitutive Laws for Engineering Materials, Troy, NY, July 27–30, 1999, R.C. Picu and E. Krempl, eds., Rensselaer Polytechnique Institute, Troy, NY, 1999, pp. 217–20.

    Google Scholar 

  7. H. Hargarter, M.T. Lyttle, and E.A. Starke: Mater. Sci. Eng., 1998, vol. A257, p. 87.

    CAS  Google Scholar 

  8. S.-H. Choi, J.C. Brem, F. Barlat, and K.H. Oh: Proc. ICOTOM 12, 1999, J.A. Szpunar, ed., NRC Research Press, Ottowa, 1999, pp. 569–74.

    Google Scholar 

  9. S.-H. Choi and F. Barlat: Scripta Mater., 1999, vol. 41, pp. 981–86.

    Article  CAS  Google Scholar 

  10. V. Gerold: in Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland Publishing Company, Amsterdam, 1979, vol. 4, pp. 221–60.

    Google Scholar 

  11. J.W. Martin: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, Cambridge, United Kingdom, 1980.

    Google Scholar 

  12. W.F. Hosford and R.H. Zeisoft: Metall. Trans., 1972, vol. 3, pp. 113–21.

    CAS  Google Scholar 

  13. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  14. J.W.F. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  15. P. Bate, W.T. Roberts, and D.V. Wilson: Acta Metall., 1981, vol. 29, pp. 1797–1814.

    Article  CAS  Google Scholar 

  16. D.V. Wilson: Acta Metall., 1965, vol. 13, pp. 807–14.

    Article  CAS  Google Scholar 

  17. J.D. Eshelby: R. Soc. London, 1957, vol. A241, pp. 376–96.

    Article  Google Scholar 

  18. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng., 1997, vol. A238, pp. 219–74.

    CAS  Google Scholar 

  19. M.T. Pérez-Prado, T.R. McNelley, O.A. Ruano, and G. González-Doncel: Metall. Mater. Trans., A 1998, vol. A29A, pp. 485–92.

    Article  Google Scholar 

  20. S. Matthies: Phys. Status Solid, 1980, vol. 101, pp. 111–15.

    Google Scholar 

  21. S. Matthies and F. Wagner: Phys. Status Solid, 1981, vol. 107, 591–601.

    Google Scholar 

  22. H.J. Bunge: Texture Analysis in Material Science, Butterworth and Co., London, 1982.

    Google Scholar 

  23. F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, and S. Makosey: J. Mech. Phys. Solids, 1997, vol. 45, pp. 1727–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.H., Barlat, F. & Liu, J. Effect of precipitates on plastic anisotropy for polycrystalline aluminum alloys. Metall Mater Trans A 32, 2239–2247 (2001). https://doi.org/10.1007/s11661-001-0199-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0199-2

Keywords

Navigation