Skip to main content
Log in

Discontinuous coarsening of the lamellar structure of γ-TiAl-based intermetallic alloys and its control

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Discontinuous coarsening (DC) of the primary lamellar structure (PLS) occurring at lamellar colony boundaries (LCBs) and in surface layers of various Ti-(40 to 45) at. pct Al binary and Ti-46 at. pct Al-X (X=Si and C) ternary alloys was systematically investigated by using optical microscopy and scanning and transmission electron microscopy. The compositions of the α 2 and γ phases in the primary lamellar structure were estimated based on the weight fractions of the two phases, determined by X-ray diffraction. When the solution-treated Ti-(40 to 45) at. pct Al binary alloys were subsequently soaked at 1000 °C, the primary lamellae in the Ti-40 at. pct Al alloy were the most stable, while those in the Ti-44 at. pct Al were the most unstable. Both the thermodynamic analysis and experimental results confirm that the driving force of the coarsening is mainly derived from the reduction of the chemical free energy (i.e., out-of-equilibrium chemical composition) and the interfacial energy of primary lamellae, whereas the coarsening resistance is mainly from the increase of the elastic strain energy of lamellar interfaces and the surrounding during coarsening. It is found that Si has an exceptional ability to hinder the coarsening of the primary lamellar structure at high temperatures, but the precise mechanism for this improvement is uncertain now. Based on this study, a proposal is finally addressed to improve the thermal stability of the primary lamellar structure of titanium aluminides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DC:

discontinuous coarsening

EM:

eutectic microstructure containing the Ti5(Al,Si)3 phase in the Ti-Al-Si system

PLS:

primary lamellar structure

L:

lamellae

LCB:

lamellar colony boundary

SL:

surface layer of one specimen

ΔF :

driving force of discontinuous coarsening

ΔG I :

reduction of interfacial energy after the coarsening

ΔG C :

chemical free energy loss after the coarsening, i.e., difference of ΔG /Total m and ΔG /PLS m at a given temperature

ΔG /Total m :

chemical free energy loss from a superstaturated α 2 matrix to the equilibrium α 2 and γ phases at a given temperature

ΔG /PLS m :

chemical free energy loss from a supersaturated α 2 matrix to the metastable α 2 and γ phases (primary lamellar structure) at a given temperature

ΔG S :

strain energy stored in surface layer due to specimen preparation

ΔF S :

driving force of the coarsening in surface layer

ΔG R :

discontinuous coarsening resistance

ΔG ES :

increase of elastic strain energy during the coarsening

ΔG B :

increase of grain boundary energy during the coarsening associated with the increase of DC cell boundary area

References

  1. K.S. Chan and Y.-W. Kim: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 179–96.

    Google Scholar 

  2. K.S. Chan, J. Onstott, and K.S. Kumar: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 71–80.

    Article  CAS  Google Scholar 

  3. G. Frommeyer, W. Wunderlich, T. Kremser, and Z.G. Liu: Mater. Sci. Eng., 1992, vol. A152, pp. 166–72.

    CAS  Google Scholar 

  4. Y.-W. Kim: JOM, 1994, vol. 46, pp. 30–40.

    CAS  Google Scholar 

  5. D.S. Shih, S.-C. Huang, G.K. Scarr, H. Jiang, and J.C. Chestnutt: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 135–48.

    Google Scholar 

  6. J. Campbell, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 563–77.

    CAS  Google Scholar 

  7. M.F. Bartholomensz and J.A. Wert: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2161–71.

    Google Scholar 

  8. Y.-W. Kim: Acta Metall. Mater., 1992, vol. 40, pp. 1121–34.

    Article  CAS  Google Scholar 

  9. A. Denquin and S. Naka: Acta Mater., 1996, vol. 44, pp. 343–65.

    Article  CAS  Google Scholar 

  10. S.A. Jones and M.J. Kaufman: Acta Metall. Mater., 1993, vol. 41, pp. 387–98.

    Article  CAS  Google Scholar 

  11. P. Pouly, M.J. Hua, C.I. Garcia, and A.J. DeArdo: Scripta Metall. Mater., 1993, vol. 29, pp. 1529–34.

    Article  CAS  Google Scholar 

  12. S.I. Kardashova, A.Y. Lozovoi, and I.M. Razumovskii: Acta Metall. Mater., 1994, vol. 42, pp. 3341–48.

    Article  CAS  Google Scholar 

  13. D.S. Shong and Y.-W. Kim: Scripta Metall. Mater., 1989, vol. 23, pp. 257–61.

    CAS  Google Scholar 

  14. Y. Yamabe, N. Honjo, and M. Kikuchi: Proc. Int. Symp. on Intermetallic Compounds, Structure and Mechanical Properties (JIMIS-6), O. Izumi, ed., JIM, Sendai, 1991, pp. 821–24.

    Google Scholar 

  15. G.W. Qin, J.J. Wang, and S.M. Hao: Intermetallics, 1999, vol. 7, pp. 1–4.

    Article  CAS  Google Scholar 

  16. G.W. Qin, S.M. Hao, and D. Song: Acta Metall. Sinica, 1998, vol. 34, pp. 1279–85 (in Chinese).

    CAS  Google Scholar 

  17. M. Oehring, P.J. Ennis, F. Appel, and R. Wagner: in High-Temperature Ordered Intermetallic Alloys VII, Materials Research Society Symposia Proceedings, C.C. Koch, C.T. Liu, N.S. Stoloffad, and A. Wanner, eds., MRS, Pittsburgh, PA, 1997, pp. 257–62.

    Google Scholar 

  18. J.N. Wang and T.G. Nieh: Acta Mater., 1998, vol. 46, pp. 1887–1901.

    Article  CAS  Google Scholar 

  19. J.Y. Jung and J.K. Park: Acta Mater., 1998, vol. 46, pp. 4123–30.

    Article  CAS  Google Scholar 

  20. S. Mitao and L.A. Bendersky: Acta Mater., 1997, vol. 45, pp. 4475–89.

    Article  CAS  Google Scholar 

  21. G.W. Qin and S.M. Hao: Scripta Mater., 1997, vol. 37, pp. 937–42.

    Article  CAS  Google Scholar 

  22. D. Hu, A.B. Godfrey, and M. Lorreto: Intermetallics, 1998, vol. 6, pp. 413–17.

    Article  CAS  Google Scholar 

  23. D.Y. Seo, T.R. Bieler, S.U. An, and D.E. Larsen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 89–98.

    CAS  Google Scholar 

  24. R.V. Ramanujan, P.J. Maziasz, and C.T. Liu: Acta Mater., 1996, vol. 44, pp. 2611–42.

    Article  CAS  Google Scholar 

  25. S.-C. Huang, D.W. Mckee, D.S. Shih, and J.C. Chestnutt: in Intermetallic Compounds—Structure and Mechanical Properties, O. Izumi, ed., JIM, Sendai, 1991, pp. 367–70.

    Google Scholar 

  26. H.S. Park, S.K. Hwang, C.M. Lee, Y.C. Yoo, S.W. Nam, and N.J. Kim: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 251–59.

    CAS  Google Scholar 

  27. R.V. Ramanujan: Acta Metall. Mater., 1994, vol. 42, pp. 2775–81.

    Article  CAS  Google Scholar 

  28. C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian: Acta Metall. Mater., 1989, vol. 37, pp. 1321–36.

    Article  CAS  Google Scholar 

  29. Y. Umakoshi, T. Nakano, and T. Yamane: Mater. Sci. Eng. A, 1992, vol. A152, pp. 81–88.

    CAS  Google Scholar 

  30. J.D. Livingston and J.W. Cahn: Acta Metall., 1974, vol. 22, pp. 495–503.

    Article  CAS  Google Scholar 

  31. M. Kikuchi and Y. Yamabe: Proc. of Int. Symp. on Intermetallic Compounds, Structure and Mechanical Properties (JIMIS-6), O. Izumi, ed., JIM, Sendai, 1991, pp. 815–88.

    Google Scholar 

  32. J.Y. Jung and J.K. Park: Phil. Mag. A, 2000, vol. 80, pp. 1127–38.

    Article  CAS  Google Scholar 

  33. J.T. Li, Y.P. Zong, and S.M. Hao: J. Mater. Sci. Technol., 1999, vol. 15, pp. 58–74.

    Google Scholar 

  34. T. Noda, M. Okake, S. Isobe, and M. Sayashi: Mater. Sci. Eng. A, 1995, vols. A192–A193, pp. 774–79.

    Google Scholar 

  35. D.R. Johnson, H. Inui, and M. Yamaguchi: Acta Mater., 1996, vol. 44, pp. 2523–35.

    Article  CAS  Google Scholar 

  36. S. Mitao and L.A. Bendersky: Proc. Int. Conf. on Solid-Solid Phase Transformations ’99 (JIMIC-3), M. Koiwa, K. Otsuka, and T. Miyazaki, eds., JIM, Kyoto, 1999, pp. 585–88.

    Google Scholar 

  37. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317–425.

    Article  CAS  Google Scholar 

  38. U.R. Kattner and W.J. Boettinger: Mater. Sci. Eng. A, 1992, vol. A152, pp. 9–17.

    CAS  Google Scholar 

  39. J.T. Li, M. Jiang, and S.M. Hao: J. Northeastern University (Natural Science Version), 1998, vol. 19, pp. 1–6.

    Google Scholar 

  40. U.R. Kattner, J.C. Lin, and Y.A. Chang: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 2081–90.

    CAS  Google Scholar 

  41. H.A. Lipsitt: in Titanium Aluminides—an Overview, High Temperature Ordered Intermetallic Alloys, Materials Research Society Symposia Proceedings, MRS, Pittsburgh, PA, 1985, vol. 39, pp. 351–62.

    Google Scholar 

  42. F.R.N. Nabarro: Proc. Phys. Soc., 1940, vol. 52, pp. 90–104.

    Article  CAS  Google Scholar 

  43. P. Wang and V.K. Vasudevan: Scripta Metall., 1992, vol. 27, pp. 89–94.

    Article  CAS  Google Scholar 

  44. H. Tian, Z. Huang, C. Chen, and J. Lin: Acta Mater. Sinica, 1994, vol. A30, pp. 117–22 (in Chinese).

    Google Scholar 

  45. W.B. Lee, H.S. Yang, and A.K. Mukherjee: Mater. Sci. Eng. A, 1995, vols. A192–A193, pp. 733–40.

    Google Scholar 

  46. F.Y. Hau, G.X. Wang, and H.J. Klaar: Scripta Metall. Mater., 1995, vol. 33, pp. 597–601.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, G.W., Oikawa, K., Sun, Z.M. et al. Discontinuous coarsening of the lamellar structure of γ-TiAl-based intermetallic alloys and its control. Metall Mater Trans A 32, 1927–1938 (2001). https://doi.org/10.1007/s11661-001-0005-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0005-1

Keywords

Navigation