Skip to main content
Log in

A model for nonclassical nucleation of solid-solid structural phase transformations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new model for homogeneous nucleation of structural phase transformations, which can span the range of nucleation from classical to nonclassical, is presented. This model is extended from the classical nucleation theory by introducing driving-force dependencies into the interfacial free energy, the misfit strain energy, and the nucleus chemical free-energy change in order to capture the nonclassical nucleation phenomena. The driving-force dependencies are determined by matching the asymptotic solutions of the new model for the nucleus size and the nucleation energy barrier to the corresponding asymptotic solutions of the Landau-Ginzburg model for nucleation of solid-state phase transformations in the vicinity of lattice instability. Thus, no additional material parameters other than those of the classical nucleation theory and the Landau-Ginzburg model are required, and nonclassical nucleation behavior can be easily predicted based on the well-developed analytical solutions of the classical nucleation model. A comparison of the new model to the Landau-Ginzburg model for homogeneous nucleation of a dilatational transformation is presented as a benchmark example. An application to homogeneous nucleation of a cubic-to-tegragonal transformation is presented to illustrate the capability of this model. The nonclassical homogeneous nucleation behavior of the experimentally studied fcc → bcc transformation in the Fe-Co system is examined by the new model, which predicts a 20 pct reduction in the critical driving force for homogeneous nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Fisher, J.H. Hollomon, and D. Turnbull: Trans. AIME, 1949, vol. 185, pp. 691–700.

    Google Scholar 

  2. L. Kaufman and M. Cohen: in Progress in Metal Physics, B. Chalmers and R. King, eds., Pergamon Press, New York, NY, 1958, vol. 7, pp. 165–246.

    Google Scholar 

  3. J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon, Oxford, United Kingdom, 1975.

    Google Scholar 

  4. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman and Hall, London, 1992.

    Google Scholar 

  5. G.B. Olson and A.L. Roitburd: in Martensite, G.B. Olson and W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992.

    Google Scholar 

  6. A.L. Roitburd: in Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull, eds., Academic Press, New York, NY, 1978, vol. 33, pp. 317–90.

    Google Scholar 

  7. G.B. Olson and M. Cohen: J. Phys., 1982, vol. 43, pp. C4-C5.

    Google Scholar 

  8. D.M. Haezebrouck: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1987.

    Google Scholar 

  9. B. Moran, Y.A. Chu, and G.B. Olson: Int. J. Solid Structure, 1996, vol. 33 (13), pp. 1903–19.

    Article  Google Scholar 

  10. Y.A. Chu and B. Moran: Modelling Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 455–71.

    Article  Google Scholar 

  11. T. Belytschko, Y.Y. Lu, and L. Gu: Int. J. Num. Methods Eng., 1994, vol. 37, pp. 229–56.

    Article  Google Scholar 

  12. Y.Y. Lu, T. Belytschko, and L. Gu: Comput. Methods Appl. Mech. Eng., 1994, vol. 113, pp. 397–414.

    Article  Google Scholar 

  13. G.R. Barsch and J.A. Krumhansl: Phys. Rev. Lett., 1984, vol. 53(11), pp. 1069–72.

    Article  CAS  Google Scholar 

  14. G.R. Barsch and J.A. Krumhansl: Metall. Trans. A, 1988, vol. 19A, pp. 761–75.

    CAS  Google Scholar 

  15. M. Lin, G.B. Olson, and M. Cohen: Acta Metall. Mater., 1993, vol. 41(1), pp. 253–63.

    Article  CAS  Google Scholar 

  16. J.D. Eshelby: Proc. R. Soc., 1957, vol. A241, pp. 376–96.

    Google Scholar 

  17. J.D. Eshelby: Proc. R. Soc., 1959, vol. A252, pp. 561–69.

    Google Scholar 

  18. T. Mura: Micromechanics of Defects in Solids, 2nd ed., Academic Publishers, Hingham, MA, Kluwer, 1987.

    Google Scholar 

  19. J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28, pp. 258–67.

    Article  CAS  Google Scholar 

  20. P. Hong: Ph.D. Thesis, Northwestern University, Evanston, IL, 1994.

    Google Scholar 

  21. P. Hong and G.B. Olson: Solid State Commun., 1993, vol. 85(8), pp. 681–83.

    Article  CAS  Google Scholar 

  22. S.H. Wen, E. Kostlan, M. Hong, A.G. Khachaturyan, and J.W. Morris, Jr.: Acta Metall., 1981, vol. 29, pp. 1247–54.

    Article  CAS  Google Scholar 

  23. Y.A. Chu: Ph.D. Thesis, Northwestern University, Evanston, IL, 1996.

    Google Scholar 

  24. G.L. Krasko and G.B. Olson: Phys. Rev. B, 1989, vol. 40(17), pp. 11536–11545.

    Article  CAS  Google Scholar 

  25. A.G. Khachaturyan: Theory of Structural Phase Transformations in Solids, John Wiley and Sons Inc., New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Y.A., Moran, B., Olson, G.B. et al. A model for nonclassical nucleation of solid-solid structural phase transformations. Metall Mater Trans A 31, 1321–1331 (2000). https://doi.org/10.1007/s11661-000-0251-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0251-7

Keywords

Navigation