Skip to main content

Advertisement

Log in

Modeling creep and fatigue of copper alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article reviews expressions to quantify the thermal creep and fatigue lifetime for four copper alloys: Cu-Ag-P, Cu-Cr-Zr, Cu-Ni-Be, and Cu-Al2O3. These property models are needed to simulate the mechanical behavior of structures with copper components, which are subjected to high heat-flux and fatigue loading conditions, such as molds for the continuous casting of steel and the first wall in a fusion reactor. Then, measurements of four-point bending fatigue tests were conducted on two-layered specimens of copper alloy and stainless steel, and thermal ratchetting behavior was observed at 250 °C. The test specimens were modeled with a two-dimensional elastic-plastic-creep finite-element model using the ABAQUS software. To match the measurements, a primary thermal-creep law was developed for Cu-0.28 pct Al2O3 for stress levels up to 500 MPa and strain rates from 10−8 to 10−2 s−1. Specifically, \(\dot \varepsilon \)(s−1)=1.43×1010 exp (−197,000/8.31 T(K)) (σ(MPa))2.5 (t(s))−0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.G. Thomas: “Effect of Copper Properties on Thermal Distortion of Continuous Slab Casting Molds,” University of Illinois at Urbana-Champaign, Urbana, IL, Report to Brush Wellman, Cleveland, OH; August 26, 1993.

    Google Scholar 

  2. B.G. Thomas, G. Li, A. Moitra, and D. Habing: ISS Trans., 1998, vol. 25(10), pp. 125–43.

    CAS  Google Scholar 

  3. J.O. Ratka and W.D. Spiegelberg: IEEE Trans. Magn., 1994, vol. 30(4), pp. 1859–62.

    Article  CAS  Google Scholar 

  4. T.G. O’Connor and J.A. Dantzig: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 443–57.

    Google Scholar 

  5. S.J. Zinkle and S.A. Fabritsev: Atomic and Plasma-Material Interaction Data for Fusion, December 1994, vol. 5, pp. 163–191.

    CAS  Google Scholar 

  6. J.F. Stubbins, D.C. Drockelman, P. Kurath, K.D. Leedy, G. Li, J.L. McAfee, G. D. Morgan, K.T. Stattery, B.G. Thomas, and G.W. Willy: Report No. ITER/US/95/IV-BL-20, Final Report of U.S. ITER Task T8 (CY 1995), University of Illinois at Urbana-Champaign, Urbana, IL, Dec. 1995.

  7. P. Fenici, D.J. Boerman, G.P. Tartaglia, and J.D. Elen: J. Nucl. Mater., 1994, vols. 212–215, pp. 399–403.

    Article  Google Scholar 

  8. I.V. Gorynin, S.A. Fabritsiev, and V.V. Rybin: J. Nucl. Mater., 1992, vols. 191–194, pp. 401–06.

    Article  Google Scholar 

  9. R.J. Weggel, J.O. Ratka, W.D. Spiegelberg, and Y. Sakai: IEEE Trans. Magn., 1994, vol. 30 (4), pp. 2188–91.

    Article  CAS  Google Scholar 

  10. “Elbrodur Cu-Cr-Zr Alloys,” Technical Data Brochure on Cu Alloy Moulds for Continuous Casting, KM Europa-Metal (Kabelmetal), Oshabruck, Germany, Mar. 1997.

  11. R.R. Solomon, A.V. Nadkarni, and J.D. Troxell: University of Illinois at Urbana-Champaign, Urbana, IL, personal communication, Oct. 3, 1995.

  12. J.-P. Blanchet: Rev. Metall.-CIT, 1982, vol. 82, pp. 237–52.

    Google Scholar 

  13. P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. Wang: Metall. Trans. A, 1992, vol. 23A, pp. 903–18.

    CAS  Google Scholar 

  14. L. Shi and D.O. Northwood: J. Mater. Eng. Performance, 1995, vol. 4 (2), pp. 196–211.

    CAS  Google Scholar 

  15. S.J. Zinkle: Report No. DOE/ER-0045/16, Department of Energy, Oak Ridge National Laboratory, Oak Ridge, TN, Mar. 31, 1986, pp. 164–67.

  16. J.E. Synk and K. Vedula: Mater. Sci. Technol., 1987, vol. 3, pp. 72–75.

    CAS  Google Scholar 

  17. J.J. Stephen and D.T. Schmale: Report No. SAND87-1296, Sandia National Laboratories, Albuquerque, NM, 1987.

  18. J.J. Stephen, R.J. Bourcier, F.J. Vigil, and D.T. Schmale: Report No. SAND88-1351, Sandia National Laboratories, Albuquerque, NM, 1988.

  19. V.R. Barabash, G.L. Saksugansky, Y.F. Shevakin, et al.: ITER-IL-NE-1-0-3, ITER Joint Central Team, San Diego JWS, La Jolla, CA, USA, Feb. 1990.

  20. T.J. Miller, S.J. Zinkle, and B.A. Chin: J. Nucl. Mater., 1991, vols. 179–181, pp. 263–66.

    Article  Google Scholar 

  21. H. Gravemann: “Materials for Mold Liners for Continuous Casting of Steel Present Position and Latest Trends,” Presented at the Duisburger StranggieBstage, London, 1984.

    Google Scholar 

  22. W. Vandermeulen, V. Massaut, J.V.D. Velde, and W. Hendrix: Proc. 14th Symp. on Fusion Technology, Pergamon Press, New York, NY, 1986, pp. 1031–35.

    Google Scholar 

  23. S.V. Raj and T.G. Langdon: Acta Metall., 1988, vol. 37 (3), pp. 843–52.

    Google Scholar 

  24. M.S. Nagorka, G.E. Lucas, and C.G. Levi: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–82.

    CAS  Google Scholar 

  25. S.E. Broyles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1217–27.

    CAS  Google Scholar 

  26. A. Ayensu and T.G. Langdon: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 901–07.

    CAS  Google Scholar 

  27. M.A. Morris and J.C. Joye: Acta Mater., 1995, vol. 43 (1), pp. 69–81.

    CAS  Google Scholar 

  28. C. Dubois and M.A. Morris: Scripta Metall. Mater., 1994, vol. 30 (7), pp. 827–32.

    Article  CAS  Google Scholar 

  29. W.D. Nix and J.C. Gibeling: Flow and Fracture at Elevated Temperature, ASM, Metals Park, OH, 1985.

    Google Scholar 

  30. P.W. Taubenlat, W.E. Smith, and A.R. Graviano: High Conductivity Copper and Aluminum Alloys, TMS-AIME, Warrendale, PA, 1984, pp. 19–29.

    Google Scholar 

  31. J. Robles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2235–45.

    CAS  Google Scholar 

  32. T.S. Srivatsan, S. Anand, and J.D. Troxell: Eng. Fract. Mech., 1993, vol. 46 (2), pp. 183–98.

    Article  Google Scholar 

  33. ABAQUS User’s Manual, K. Hibbitt, and Sorensen, Inc., Providence, RI, 1997.

  34. O.C. Zienkiewicz: The Finite Element Method, 3rd ed., McGraw-Hill Book Company Limited, New York, NY, 1984.

    Google Scholar 

  35. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge United Kingdom, 1991, p. 617.

    Google Scholar 

  36. S.S. Manson: Report No. 1170, National Advisory Commission on Aeronautics, Lewis Flight Propulsion Laboratory, Cleveland.

  37. S.S. Manson and G.R. Halford: Int. J. Fract., 1981, vol. 17, pp. 169.

    Article  Google Scholar 

  38. L.F. Coffin: Trans. ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  39. H. Sehitoglu: “Thermal Mechanical Fatigue Life Prediction Methods,” ASTM STP, 1990, vol. 1122, pp. 47–77.

  40. J.F. Stubbins, P. Kurath, D. Drockelman, G.D. Morgan, J. McAfee, G. Li, and B.G. Thomas: 1995 16th IEEE/NPSS Symp. on Fusion Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 1995, pp. 174–77.

    Book  Google Scholar 

  41. K.D. Leedy and J.F. Stubbins: University of Illinois at Urbana-Champaign, Urbana, IL, private communication, June 1996.

  42. B.E. Jelke: Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1989.

    Google Scholar 

  43. K. Hatanaka and Y. Ishimoto: Proc. 1992 Joint ASME/JSME Conf. on Electronic Packaging, Milpitas, CA, ASME, New York, NY, 1992, pp. 813–18.

    Google Scholar 

  44. M.C. Billone: Report No. DOE/ER-0313/19, Fusion Reactor Material Semiannual Progress Report Argonne National Laboratory, Argonne, IL, Dec. 31, 1995, p. 295.

  45. G. Li: Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Thomas, B.G. & Stubbins, J.F. Modeling creep and fatigue of copper alloys. Metall Mater Trans A 31, 2491–2502 (2000). https://doi.org/10.1007/s11661-000-0194-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0194-z

Keywords

Navigation