Skip to main content
Log in

Anisotropic behavior and rupture of hydrided ZIRCALOY-4 sheets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical behavior of ZIRCALOY-4 sheets is investigated at room temperature. The effect of hydride precipitation on the mechanical behavior and on the rupture mechanism is also studied, in the range from 200 to 1200 wt ppm hydrogen and for different stress triaxialities. It is shown that the material exhibits a strong anisotropy due to its pronounced texture, and that its mechanical properties depend on the strain rate. Hydride precipitation appears to have no effect on the anisotropy or on the strain-rate sensitivity, in the range from 10−4 to 10−2 s−1. The main effect of hydrogen is the reduction of the ductility and of crack resistance. The ductile rupture mechanism is studied, focusing on the stage of damage nucleation by hydride fracture.

Observations during scanning electron microscopy (SEM) in situ tests show that hydrides allow the transmission of slip, which occurs in ZIRCALOY-4 grains. Hydrides can also deform, together with surrounding zirconium matrix. Damage appears after a plastic-strain yield of about 15 to 25 pct. Fracture occurs first on intergranular hydrides. Fracture of transgranular hydrides is observed only prior to failure, for higher plastic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Perovic and G.C. Weatherly: J. Nucl. Mater., 1984, vol. 126, pp. 160–69.

    Article  CAS  Google Scholar 

  2. C.E. Coleman and D. Hardie: J. Less Common Met., 1966, vol. 11, pp. 168–85.

    Article  CAS  Google Scholar 

  3. D.O. Northwood and U. Kosasih: Int. Met. Rev., 1983, vol. 28(2), pg. 29–121.

    Google Scholar 

  4. M.P. Puls: Metall. Trans A, 1991, vol. 22A, pp. 2327–37.

    CAS  Google Scholar 

  5. J.B. Bai, C. Prioul, and D. François: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1185–97.

    CAS  Google Scholar 

  6. J.B. Bai, D. Ji, C. Gilbon, C. Prioul, and D. François: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1199–1208.

    CAS  Google Scholar 

  7. F. Prat, M. Grange, J. Besson, and E. Andrieu: Metall. Mater. Trans., 1998, vol. 29A, pp. 1643–51.

    CAS  Google Scholar 

  8. R. Choubey and M.P. Puls: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 993–1004.

    CAS  Google Scholar 

  9. L.A. Simpson: Metall. Trans. A, 1981, vol. 12A, pp. 2113–24.

    Google Scholar 

  10. F. Yunchang and D.A. Koss: Metall. Trans. A, 1985, vol. 16A, pp. 675–81.

    Google Scholar 

  11. J.S. Bradbrook, G.W. Lorimer, and N. Ridley: J. Nucl. Mater., 1972, vol. 42, pp. 142–60.

    Article  CAS  Google Scholar 

  12. V. Perovic, G.C. Weatherly, and C.S. Simpson: Acta Metall., 1983, vol. 31 (9), pp. 1381–91.

    Article  CAS  Google Scholar 

  13. A.C. Mackenzie, J.W. Hancock, and D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  14. F. Prat: Ph.D. Thesis, Ecole des Mines de Paris, Cedex, France, 1994.

    Google Scholar 

  15. G. Bao, J.W. Hutchinson, and R.M. McMeeking: Acta Metall. Mater., 1991, vol. 39 (8), pp. 1871–82.

    Article  Google Scholar 

  16. M. Finot, Y.L. Shen, A. Needleman, and S. Suresh: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2403–20.

    CAS  Google Scholar 

  17. V. Allais, V. Vaubert, and I. Tournié: in Le Zirconium-Journées D’études Propriétés-Microstructures, G. Cailletaud and P. Lemoine, eds., Les Éditions de Physique, Paris, 1996, pp. 257–66.

    Google Scholar 

  18. W. Evans and G.W Parry: Electrochem. Technol., 1966, vol. 4, pp. 225–31.

    CAS  Google Scholar 

  19. P.D. Kaufmann and E.F. Baroch: Zirconium in Nuclear Applications, ASTM STP 551, ASTM, Philadelphia, PA, 1974, pp. 129–39.

    Google Scholar 

  20. G. Ferron: Mater. Sci. Eng., 1981, vol. 49, pp. 241–48.

    Article  CAS  Google Scholar 

  21. G. Ferron: Mater. Sci. Eng., 1982, vol. 52, pp. 133–8.

    Article  CAS  Google Scholar 

  22. R. Hill: The Mathematical Theory of Plasticity, Clarendon Press, Oxford, United Kingdom, 1950.

    Google Scholar 

  23. P. Delobelle, P. Robinet, P. Geyer, and P. Bouffioux: J. Nucl. Mater., 1996, vol. 238, pp. 135–62.

    Article  CAS  Google Scholar 

  24. J. Huez, X. Feaugas, A.L. Helbert, I. Guillot, and M. Clavel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1615–28.

    CAS  Google Scholar 

  25. S. Arsène. Ph.D. Thesis, Ecole Centrale Paris, Cedex, France, 1997.

    Google Scholar 

  26. K.G. Barraclough and C.J. Beevers: J. Mater. Sci., 1969, vol. 4, pp. 518–25.

    Article  CAS  Google Scholar 

  27. M.P. Puls: Metall. Trans. A, 1988, vol. 19A, pp. 1507–22.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grange, M., Besson, J. & Andrieu, E. Anisotropic behavior and rupture of hydrided ZIRCALOY-4 sheets. Metall Mater Trans A 31, 679–690 (2000). https://doi.org/10.1007/s11661-000-0010-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0010-9

Keywords

Navigation