Skip to main content

Advertisement

Log in

Circulating platelet concentration is associated with bone mineral density in women

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

In this cross-sectional study, enrollment included 818 female adults undergoing bone mineral density (BMD) assessment during the health examination. Subjects with osteoporosis had the lowest circulating platelet concentrations. The circulating platelet concentration was positively correlated with BMD. A high platelet concentration had independently low odds of osteoporosis.

Purpose

Platelets play an important role in bone metabolism. However, the association between circulating platelet counts and bone mineral density (BMD) has been inconsistently reported. We aimed to investigate the relationship between platelet counts and osteoporosis in Chinese women.

Methods

In this cross-sectional study, a total of 818 female adults who underwent BMD assessment during the health examination were enrolled. Blood cell counts and biochemistry data were recorded.

Results

Subjects with osteoporosis had the lowest platelet counts (238 ± 59 × 109/L) compared with subjects with osteopenia (256 ± 64 × 109/L) and a normal BMD (269 ± 76 × 109/L, P < 0.001). The circulating platelet concentration was positively correlated with the BMD of the lumbar spine (r = 0.195, P < 0.001), left hip (r = 0.145, P < 0.001), and right hip (r = 0.149, P < 0.001). According to the receiver operating characteristic curve, the cutoff platelet concentration for differentiating osteoporosis was 260 × 109/L. A high platelet concentration had significantly low odds of osteoporosis after adjusting for other covariates (odds ratio = 0.574, 95% confidence interval: 0.346‒0.953, P = 0.032).

Conclusion

The circulating platelet concentration was significantly correlated with BMD in Chinese women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Consensus development conference (1993) diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650

    Article  Google Scholar 

  2. Melton LJ 3rd, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13(12):1915–1923

    Article  PubMed  Google Scholar 

  3. Chen FP, Huang TS, Fu TS, Sun CC, Chao AS, Tsai TL (2018) Secular trends in incidence of osteoporosis in Taiwan: a nationwide population-based study. Biomed J 41(5):314–320

    Article  PubMed  PubMed Central  Google Scholar 

  4. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353(9156):878–882

    Article  CAS  PubMed  Google Scholar 

  5. Sattui SE, Saag KG (2014) Fracture mortality: associations with epidemiology and osteoporosis treatment. Nat Rev Endocrinol 10(10):592–602

    Article  PubMed  Google Scholar 

  6. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G, Kanis J, Nordin BE, Barrett-Connor E, Black D, Bonjour JP et al (1999) Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int 10(4):259–264

    Article  CAS  PubMed  Google Scholar 

  7. Lorentzon M, Johansson H, Harvey NC, Liu E, Vandenput L, McCloskey EV, Kanis JA (2022) Osteoporosis and fractures in women: the burden of disease. Climacteric 25(1):4–10

    Article  CAS  PubMed  Google Scholar 

  8. Despars G, St-Pierre Y (2011) Bidirectional interactions between bone metabolism and hematopoiesis. Exp Hematol 39(8):809–816

    Article  CAS  PubMed  Google Scholar 

  9. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  CAS  PubMed  Google Scholar 

  10. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ, Schipani E et al (2012) The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149(1):63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmed N, Khokher MA, Hassan HT (1999) Cytokine-induced expansion of human CD34+ stem/progenitor and CD34+CD41+ early megakaryocytic marrow cells cultured on normal osteoblasts. Stem Cells 17(2):92–99

    Article  CAS  PubMed  Google Scholar 

  12. Blin-Wakkach C, Rouleau M, Wakkach A (2014) Roles of osteoclasts in the control of medullary hematopoietic niches. Arch Biochem Biophys 561:29–37

    Article  CAS  PubMed  Google Scholar 

  13. Bord S, Frith E, Ireland DC, Scott MA, Craig JI, Compston JE (2005) Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone 36(5):812–819

    Article  CAS  PubMed  Google Scholar 

  14. Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, Horowitz MC (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39(5):991–999

    Article  CAS  PubMed  Google Scholar 

  15. Lin BN, Whu SW, Chen CH, Hsu FY, Chen JC, Liu HW, Chen CH, Liou HM (2013) Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration. J Tissue Eng Regen Med 7(11):841–854

    Article  CAS  PubMed  Google Scholar 

  16. Etulain J (2018) Platelets in wound healing and regenerative medicine. Platelets 29(6):556–568

    Article  CAS  PubMed  Google Scholar 

  17. Kim HL, Cho HY, Park IY, Choi JM, Kim M, Jang HJ, Hwang SM (2011) The positive association between peripheral blood cell counts and bone mineral density in postmenopausal women. Yonsei Med J 52(5):739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Kim HS, Lee HS, Kwon YJ (2020) The relationship between platelet count and bone mineral density: results from two independent population-based studies. Arch Osteoporos 15(1):43

    Article  PubMed  Google Scholar 

  19. Li L, Ge JR, Chen J, Ye YJ, Xu PC, Li JY (2020) Association of bone mineral density with peripheral blood cell counts and hemoglobin in Chinese postmenopausal women: a retrospective study. Medicine (Baltimore) 99(28):e20906

    Article  CAS  PubMed  Google Scholar 

  20. Kristjansdottir HL, Mellstrom D, Johansson P, Karlsson M, Vandenput L, Lorentzon M, Herlitz H, Ohlsson C, Lerner UH, Lewerin C (2021) High platelet count is associated with low bone mineral density: the MrOS Sweden cohort. Osteoporos Int 32(5):865–871

    Article  CAS  PubMed  Google Scholar 

  21. Valderrábano RJ, Lui LY, Lee J, Cummings SR, Orwoll ES, Hoffman AR, Wu JY (2017) Bone density loss is associated with blood cell counts. J Bone Miner Res 32(2):212–220

    Article  PubMed  Google Scholar 

  22. Valderrábano RJ, Buzkova P, Chang PY, Zakai NA, Fink HA, Robbins JA, Lee JS, Wu JY (2019) Association of bone mineral density with hemoglobin and change in hemoglobin among older men and women: the Cardiovascular Health Study. Bone 120:321–326

    Article  PubMed  Google Scholar 

  23. Stevens RF, Alexander MK (1977) A sex difference in the platelet count. Br J Haematol 37(2):295–300

    Article  CAS  PubMed  Google Scholar 

  24. Melton LJ 3rd (2001) The prevalence of osteoporosis: gender and racial comparison. Calcif Tissue Int 69(4):179–181

    Article  CAS  PubMed  Google Scholar 

  25. Licata AA, Binkley N, Petak SM, Camacho PM (2018) Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Quality of Dxa Scans and Reports. Endocr Pract 24(2):220–229

    Article  PubMed  Google Scholar 

  26. World Health Organ Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  27. Watts NB, Leslie WD, Foldes AJ, Miller PD (2013) 2013 International society for clinical densitometry position development conference: task force on normative databases. J Clin Densitom 16(4):472–481

    Article  PubMed  Google Scholar 

  28. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Kurella Tamura M, Feldman HI (2014) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 63(5):713–735

    Article  PubMed  Google Scholar 

  29. Chiang CE, Wang TD, Ueng KC, Lin TH, Yeh HI, Chen CY, Wu YJ, Tsai WC, Chao TH, Chen CH et al (2015) 2015 guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the management of hypertension. J Chin Med Assoc 78(1):1–47

    Article  PubMed  Google Scholar 

  30. Hsu CC, Wahlqvist ML, Wu IC, Chang YH, Chang IS, Tsai YF, Liu TT, Tsao CK, Hsiung CA (2018) Cardiometabolic disorder reduces survival prospects more than suboptimal body mass index irrespective of age or gender: a longitudinal study of 377,929 adults in Taiwan. BMC Public Health 18(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17):2735–2752

    Article  PubMed  Google Scholar 

  32. National Cholesterol Education Program (2001) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285(19):2486–2497

    Article  Google Scholar 

  33. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753

    Article  PubMed  Google Scholar 

  34. Yu KH, Chen DY, Chen JH, Chen SY, Chen SM, Cheng TT, Hsieh SC, Hsieh TY, Hsu PF, Kuo CF et al (2018) Management of gout and hyperuricemia: multidisciplinary consensus in Taiwan. Int J Rheum Dis 21(4):772–787

    Article  CAS  PubMed  Google Scholar 

  35. Hwang HJ, Park SY, Lee SH, Han SB, Ro KH (2012) Differences in bone mineral density between the right and left hips in postmenopausal women. J Korean Med Sci 27(6):686–690

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bain BJ (1996) Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol 49(8):664–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199(4336):1443–1445

    Article  CAS  PubMed  Google Scholar 

  38. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  39. Xiao M, Wang Y, Tao C, Wang Z, Yang J, Chen Z, Zou Z, Li M, Liu A, Jia C et al (2017) Osteoblasts support megakaryopoiesis through production of interleukin-9. Blood 129(24):3196–3209

    Article  CAS  PubMed  Google Scholar 

  40. Lemieux JM, Horowitz MC, Kacena MA (2010) Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem 109(5):927–932

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng YH, Hooker RA, Nguyen K, Gerard-O’Riley R, Waning DL, Chitteti BR, Meijome TE, Chua HL, Plett AP, Orschell CM et al (2013) Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation. J Bone Miner Res 28(6):1434–1445

    Article  CAS  PubMed  Google Scholar 

  42. Tang Y, Hu M, Xu Y, Chen F, Chen S, Chen M, Qi Y, Shen M, Wang C, Lu Y et al (2020) Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1. Theranostics 10(5):2229–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B, Cheung EN, Terry D, Sheridan W (2000) Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood 95(8):2514–2522

    Article  CAS  PubMed  Google Scholar 

  44. Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA (2007) Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 5(9):1945–1955

    Article  CAS  PubMed  Google Scholar 

  45. Rendu F, Brohard-Bohn B (2001) The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12(5):261–273

    Article  CAS  PubMed  Google Scholar 

  46. Eisinger F, Patzelt J, Langer HF (2018) The platelet response to tissue injury. Front Med (Lausanne) 5:317

    Article  PubMed  Google Scholar 

  47. Koh JM, Khang YH, Jung CH, Bae S, Kim DJ, Chung YE, Kim GS (2005) Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int 16(10):1263–1271

    Article  CAS  PubMed  Google Scholar 

  48. Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS (2020) The effect of inflammation on bone. Front Physiol 11:511799

    Article  PubMed  Google Scholar 

  49. Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19(4):652–660

    Article  CAS  PubMed  Google Scholar 

  50. Sharif PS, Abdollahi M (2010) The role of platelets in bone remodeling. Inflamm Allergy Drug Targets 9(5):393–399

    Article  CAS  PubMed  Google Scholar 

  51. Marini S, Barone G, Masini A, Dallolio L, Bragonzoni L, Longobucco Y, Maffei F (2020) The effect of physical activity on bone biomarkers in people with osteoporosis: a systematic review. Front Endocrinol (Lausanne) 11:585689

    Article  PubMed  Google Scholar 

  52. Zhu Z, Zhao J, Fang Y, Hua R (2021) Association between serum estradiol level, sex hormone binding globulin level, and bone mineral density in middle-aged postmenopausal women. J Orthop Surg Res 16(1):648

    Article  PubMed  PubMed Central  Google Scholar 

  53. E Hassan N, A El-Masry S, S M El-Saeed G, Al-Tohamy M, H Thabet E, Aly MM, Mohsen M, Khalil A (2020) Association between visceral adipose tissue and estradiol with bone health among obese women with metabolic syndrome. Pak J Biol Sci 23(10):1237–1244

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Health Management Center database and Clinical Informatics Research & Development Center in Taichung Veterans General Hospital.

Funding

This work was supported by grants from Taichung Veterans General Hospital, Taichung, Taiwan (grant number TCVGH-1103503C), and the Ministry of Science and Technology, Taiwan (grant number MOST 110–2314-B-075A-004-MY3). The funders had no role in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Te Lee.

Ethics declarations

Ethics approval

The Institutional Review Board of Taichung Veterans General Hospital approved the research protocol (IRB TCVGH No: CE17234A).

Consent to participate

All data on patients in this retrospective study were anonymously provided by Clinical Informatics Research & Development Center in Taichung Veterans General Hospital. The need for informed consent was waived.

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WC., Cheng, YC., Lee, WJ. et al. Circulating platelet concentration is associated with bone mineral density in women. Arch Osteoporos 17, 44 (2022). https://doi.org/10.1007/s11657-022-01089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-022-01089-7

Keywords

Navigation