Skip to main content
Log in

Basketball players possess a higher bone mineral density than matched non-athletes, swimming, soccer, and volleyball athletes: a systematic review and meta-analysis

  • Review
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Basketball athletes possess a higher bone mineral density (BMD) than matched non-athletes and swimming, soccer, and volleyball athletes. Differences appear to be exacerbated with continued training and competition beyond adolescence. The greater BMD in basketball athletes compared to non-athletes, swimming, and soccer athletes is more pronounced in males than females.

Purpose

The aim of this study was to examine differences in total and regional bone mineral density (BMD) between basketball athletes, non-athletes, and athletes competing in swimming, soccer, and volleyball, considering age and sex.

Methods

PubMed, MEDLINE, ERIC, Google Scholar, and Science Direct were searched. Included studies consisted of basketball players and at least one group of non-athletes, swimming, soccer, or volleyball athletes. BMD data were meta-analyzed. Cohen’s d effect sizes [95% confidence intervals (CI)] were interpreted as: trivial ≤ 0.20, small = 0.20–0.59, moderate = 0.60–1.19, large = 1.20–1.99, and very large ≥ 2.00.

Results

Basketball athletes exhibited significantly (p < 0.05) higher BMD compared to non-athletes (small-moderate effect in total-body: d = 1.06, CI 0.55, 1.56; spine: d = 0.67, CI 0.40, 0.93; lumbar spine: d = 0.96, CI 0.57, 1.35; upper limbs: d = 0.70, CI 0.29, 1.10; lower limbs: d = 1.14, CI 0.60, 1.68; pelvis: d = 1.16, CI 0.05, 2.26; trunk: d = 1.00, CI 0.65, 1.35; and femoral neck: d = 0.57, CI 0.16, 0.99), swimming athletes (moderate-very large effect in total-body: d = 1.33, CI 0.59, 2.08; spine: d = 1.04, CI 0.60, 1.48; upper limbs: d = 1.19, CI 0.16, 2.22; lower limbs: d = 2.76, CI 1.45, 4.06; pelvis d = 1.72, CI 0.63, 2.81; and trunk: d = 1.61, CI 1.19, 2.04), soccer athletes (small effect in total-body: d = 0.58, CI 0.18, 0.97), and volleyball athletes (small effect in total-body: d = 0.32, CI 0.00, 0.65; and pelvis: d = 0.48, CI 0.07, 0.88). Differences in total and regional BMD between groups increased with age and appeared greater in males than in females.

Conclusion

Basketball athletes exhibit a greater BMD compared to non-athletes, as well as athletes involved in swimming, soccer, and volleyball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data

Data used to support the findings of this review are included within the article.

References

  1. Lee E, Long KA, Risser WL, Poindexter H, Gibbons WE, Goldzieher J (1995) Variations in bone status of contralateral and regional sites in young athletic women. Med Sci Sports Exerc 27:1354–1361

    Article  CAS  PubMed  Google Scholar 

  2. Stanforth D, Lu T, Stults-Kolehmainen MA, Crim BN, Stanforth PR (2016) Bone mineral content and density among female NCAA division I athletes across the competitive season and over a multi-year time frame. J Strength Cond Res 30:2828–2838

    Article  PubMed  Google Scholar 

  3. Weaver C, Gordon C, Janz K, Kalkwarf H, Lappe JM, Lewis R, O’Karma M, Wallace T, Zemel B (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporosis Int 27:1281–1386

    Article  CAS  Google Scholar 

  4. Jallai T, Maasalu K, Kums T, Ereline J, Gapeyeva H, Pääsuke M (2017) Comparison of bone mineral density in adolescent male soccer and basketball players. Sport Sci Health 13:93–98

    Article  Google Scholar 

  5. Risser WL, Lee E, LeBlanc A, Poindexter H, Risser J, Schneider V (1990) Bone density in eumenorrheic female college athletes. Med Sci Sports Exerc 22:570–574

    Article  CAS  PubMed  Google Scholar 

  6. Dook JE, James C, Henderson N, Price R (1997) Exercise and bone mineral density in mature female athletes. Med Sci Sports Exerc 29:291–296

    Article  CAS  PubMed  Google Scholar 

  7. Carbuhn AF, Fernandez TE, Bragg AF, Green JS, Crouse SF (2010) Sport and training influence bone and body composition in women collegiate athletes. J Strength Cond Res 24:1710–1717

    Article  PubMed  Google Scholar 

  8. Ubago-Guisado E, Gómez-Cabello A, Sánchez-Sánchez J, García-Unanue J, Gallardo L (2015) Influence of different sports on bone mass in growing girls. J Sports Sci 33:1710–1718

    Article  PubMed  Google Scholar 

  9. Sanfilippo J, Krueger D, Heiderscheit B, Binkley N (2019) Dual-energy X-ray absorptiometry body composition in NCAA division I athletes: exploration of mass distribution. Sports Health 11:453–460

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nichols DL, Sanborn CF, Bonnick SL, Gench B, DiMarco N (1995) Relationship of regional body composition to bone mineral density in college females. Med Sci Sports Exerc 27:178–182

    Article  CAS  PubMed  Google Scholar 

  11. Zribi A, Zouch M, Chaari H, Bouajina E, Zouali M, Nebigh A, Tabka Z (2014) Enhanced bone mass and physical fitness in prepubescent basketball players. J Clin Densitom 17:156–162

    Article  PubMed  Google Scholar 

  12. Agostinete RR, Lynch KR, Gobbo LA, Lima MCS, Ito IH, Luiz-de-Marco R, Rodrigues-Junior MA, Fernandes RA (2016) Basketball affects bone mineral density accrual in boys more than swimming and other impact sports: 9-mo follow-up. J Clin Densitom 19:375–381

    Article  PubMed  Google Scholar 

  13. Agostinete RR, Maillane-Vanegas S, Lynch KR, Turi-Lynch B, Coelho-e-Silva MJ, Campos EZ, Cayres SU, Fernandes RA (2017) The impact of training load on bone mineral density of adolescent swimmers: a structural equation modeling approach. Pediatr Exerc Sci 29:520–528

    Article  PubMed  Google Scholar 

  14. Maillane-Vanegas S, Agostinete RR, Lynch KR, Ito IH, Luiz-de-Marco R, Rodrigues-Junior MA, Turi-Lynch BC, Fernandes RA (2020) Bone mineral density and sports participation. J Clin Densitom 23:294–302

  15. Taylor JB, Wright AA, Dischiavi SL, Townsend MA, Marmon AR (2017) Activity demands during multi-directional team sports: a systematic review. Sports Med 47:2533–2551

    Article  PubMed  Google Scholar 

  16. Ubago-Guisado E, García-Unanue J, López-Fernández J, Sánchez-Sánchez J, Gallardo L (2017) Association of different types of playing surfaces with bone mass in growing girls. J Sports Sci 35:1484–1492

    Article  PubMed  Google Scholar 

  17. Gomez-Bruton A, Montero-Marin J, González-Agüero A, Garcia-Campayo J, Moreno LA, Casajus JA, Vicente-Rodriguez G (2016) The effect of swimming during childhood and adolescence on bone mineral density: a systematic review and meta-analysis. Sports Med 46:365–379

    Article  PubMed  Google Scholar 

  18. Nieves JW (2017) Sex-differences in skeletal growth and aging. Curr Osteoporosis Rep 15:70–75

    Article  Google Scholar 

  19. Babatunde O, Forsyth J, Gidlow C (2012) A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporosis Int 23:109–119

    Article  CAS  Google Scholar 

  20. Martyn-St James M, Carroll S (2009) A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 43:898–908

    Article  CAS  PubMed  Google Scholar 

  21. Martyn-St James M, Carroll S (2010) Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab 28:251–267

    Article  PubMed  Google Scholar 

  22. Zhao R, Zhao M, Zhang L (2014) Efficiency of jumping exercise in improving bone mineral density among premenopausal women: a meta-analysis. Sports Med 44:1393–1402

    Article  PubMed  Google Scholar 

  23. Lozano-Berges G, Matute-Llorente Á, González-Agüero A, Gómez-Bruton A, Gómez-Cabello A, Vicente-Rodriguez G, Casajús JA (2018) Soccer helps build strong bones during growth: a systematic review and meta-analysis. Eur J Pediatr 177:295–310

    Article  PubMed  Google Scholar 

  24. Gomez L, Stubbs B, Shirazi A, Vancampfort D, Gaughran F, Lally J (2016) Lower bone mineral density at the hip and lumbar spine in people with psychosis versus controls: a comprehensive review and skeletal site-specific meta-analysis. Curr Osteoporos Rep 14:249–259

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  PubMed  Google Scholar 

  26. Cohen AT, Goto S, Schreiber K, Torp-Pedersen C (2015) Why do we need observational studies of everyday patients in the real-life setting? Eur Heart J Suppl 17:D2–D8

  27. Kelley GA, Kelley KS, Kohrt WM (2012) Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 13:177

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P (2010) Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weidauer L, Minett M, Negus C, Binkley T, Vukovich M, Wey H, Specker B (2014) Odd-impact loading results in increased cortical area and moments of inertia in collegiate athletes. Eur J Appl Physiol 114:1429–1438

    Article  PubMed  Google Scholar 

  30. Tenforde AS, Fredericson M (2011) Influence of sports participation on bone health in the young athlete: a review of the literature. PM&R 3:861–867

    Article  Google Scholar 

  31. Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievänen H (2010) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporosis Int 21:1687–1694

    Article  CAS  Google Scholar 

  32. Nuti R, Martini G, Righi G, Frediani B, Turchetti V (1991) Comparison of total-body measurements by dual-energy x-ray absorptiometry and dual-photon absorptiometry. J Bone Min Res 6:681–687

    Article  CAS  Google Scholar 

  33. Bagur-Calafat C, Farrerons-Minguella J, Girabent-Farrés M, Serra-Grima J (2015) The impact of high level basketball competition, calcium intake, menses, and hormone levels in adolescent bone density: a three-year follow-up. J Sports Med Phys Fit 55:58–67

    CAS  Google Scholar 

  34. Agostinete RR, Duarte JP, Valente-dos-Santos J, Coelho-e-Silva MJ, Tavares OM, Conde JM, Fontes-Ribeiro CA, Condello G, Capranica L, Caires SU (2017) Bone tissue, blood lipids and inflammatory profiles in adolescent male athletes from sports contrasting in mechanical load. PLoS One 12:e0180357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Voils CI, Crandell JL, Chang Y, Leeman J, Sandelowski M (2011) Combining adjusted and unadjusted findings in mixed research synthesis. J Eval Clin Pract 17:429–434

    Article  PubMed  Google Scholar 

  36. Rebai H, Zarrouk N, Ghroubi S, Sellami M, Ayedi F, Baklouti S, Elleuch MH, Elleuch M (2012) Long-term basketball playing enhances bone mass and isokinetic muscle strength. Isokinet Exerc Sci 20:221–227

    Article  Google Scholar 

  37. Higgins J, Deeks J (eds) (2008) Chapter 7: selecting studies and collecting data. John Wiley & Sons, Chichester (UK)

    Google Scholar 

  38. National Heart Lung and Blood Institute (2015) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies-NHLBI, National Institutes of Health. https://www.nhlbi.nih.gov/healthtopics/study-quality-assessment-tools. Accessed 15 Dec 2019

  39. Younus A, Aneni EC, Spatz ES, Osondu CU, Roberson L, Ogunmoroti O, Malik R, Ali SS, Aziz M, Feldman T (2016) A systematic review of the prevalence and outcomes of ideal cardiovascular health in US and non-US populations. Mayo Clin Proc 91:649–670

    Article  PubMed  Google Scholar 

  40. Chen DG, Fang D, Wilson JR (2017) Meta-analysis of two studies with random effects? J Minim Invasive Gynecol 24:689–690

    Article  CAS  PubMed  Google Scholar 

  41. Hopkins W, Marshall S, Batterham A, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exer 41:3–13

    Article  Google Scholar 

  42. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26:1729–1739

    Article  PubMed  Google Scholar 

  44. McCulloch RG, Bailey DA, Whalen RL, Houston CS, Faulkner RA, Craven BR (1992) Bone density and bone mineral content of adolescent soccer athletes and competitive swimmers. Pediatr Exer Sci 4:319–330

    Article  Google Scholar 

  45. Magkos F, Kavouras SA, Yannakoulia M, Karipidou M, Sidossi S, Sidossis LS (2007) The bone response to non-weight-bearing exercise is sport-, site-, and sex-specific. Clin J Sport Med 17:123–128

    Article  PubMed  Google Scholar 

  46. Magkos F, Yannakoulia M, Kavouras S, Sidossis LS (2007) The type and intensity of exercise have independent and additive effects on bone mineral density. Int J Sports Med 28:773–779

    Article  CAS  PubMed  Google Scholar 

  47. Gruodytė R, Jürimäe J, Cicchella A, Stefanelli C, Passariello C, Jürimäe T (2010) Adipocytokines and bone mineral density in adolescent female athletes. Acta Paediatr 99:1879–1884

    Article  PubMed  Google Scholar 

  48. Lang TF (2011) The bone-muscle relationship in men and women. J Osteoporos 2011:702735

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pomerants T, Tillmann V, Jürimäe J, Jürimäe T (2007) The influence of serum ghrelin, IGF axis and testosterone on bone mineral density in boys at different stages of sexual maturity. J Bone Miner Metab 25:193–197

    Article  CAS  PubMed  Google Scholar 

  50. Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535

    Article  PubMed  Google Scholar 

  51. Scanlan AT, Wen N, Tucker PS, Dalbo VJ (2014) The relationships between internal and external training load models during basketball training. J Strength Cond Res 28:2397–2405

    Article  PubMed  Google Scholar 

  52. Scofield KL, Hecht S (2012) Bone health in endurance athletes: runners, cyclists, and swimmers. Curr Sports Med Rep 11:328–334

    Article  PubMed  Google Scholar 

  53. Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Mänttäri A, Vuori I (1995) Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17:197–203

    Article  CAS  PubMed  Google Scholar 

  54. Seeman E (1999) The structural basis of bone fragility in men. Bone 25:143–147

    Article  CAS  PubMed  Google Scholar 

  55. Duncan CS, Blimkie CJ, Kemp A, Higgs W, Cowell CT, Woodhead H, Briody JN, Howman-Giles R (2002) Mid-femur geometry and biomechanical properties in 15-to 18-yr-old female athletes. Med Sci Sports Exer 34:673–681

    Google Scholar 

  56. Greene D, Naughton G, Briody J, Kemp A, Woodhead H, Corrigan L (2005) Bone strength index in adolescent girls: does physical activity make a difference? Br J Sports Med 39:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ward K, Roberts S, Adams J, Mughal M (2005) Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36:1012–1018

    Article  CAS  PubMed  Google Scholar 

  58. Andreoli A, Celi M, Volpe S, Sorge R, Tarantino U (2012) Long-term effect of exercise on bone mineral density and body composition in post-menopausal ex-elite athletes: a retrospective study. Eur J Clin Nutr 66:69–74

    Article  CAS  PubMed  Google Scholar 

  59. Mroczek D, Januszkiewicz A, KawczyNski AS, Borysiuk Z, Chmura J (2014) Analysis of male volleyball players' motor activities during a top level match. J Strength Cond Res 28:2297–2305

    Article  PubMed  Google Scholar 

  60. Stojanović E, Stojiljković N, Scanlan AT, Dalbo VJ, Berkelmans DM, Milanović Z (2018) The activity demands and physiological responses encountered during basketball match-play: a systematic review. Sports Med 48:111–135

    Article  PubMed  Google Scholar 

  61. McClay IS, Robinson JR, Andriacchi TP, Frederick EC, Gross T, Martin P, Valiant G, Williams KR, Cavanagh PR (1994) A profile of ground reaction forces in professional basketball. J Appl Biomech 10:222–236

    Article  Google Scholar 

Download references

Funding

No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilija Stojanović.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, E., Radovanović, D., Dalbo, V.J. et al. Basketball players possess a higher bone mineral density than matched non-athletes, swimming, soccer, and volleyball athletes: a systematic review and meta-analysis. Arch Osteoporos 15, 123 (2020). https://doi.org/10.1007/s11657-020-00803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-00803-7

Keywords

Navigation