Skip to main content
Log in

A focused evaluation of lumbar spine trabecular bone score in the first year post-menarche

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Trabecular bone score, an index of lumbar spine trabecular texture, has not been explored fully in adolescent girls. Our cross-sectional analysis supported the hypothesis that “adult normal” trabecular bone score has been achieved by the end of the first year post-menarche, providing a potential screening tool, independent from bone density.

Introduction

Trabecular bone score (TBS) evaluates lumbar spine (LS) trabecular texture from DXA images. Limited evidence suggests low TBS in pre-pubertal girls. TBS has not been assessed in the context of the key peri-menarcheal bone accrual phase. Thus, we evaluated (1) whether “normal” adult TBS (≥ 1.35) is reached in the first year post-menarche and (2) the role of maturational timing (menarcheal age) and status (gynecological age) in TBS variation.

Methods

For 44 healthy girls aged 11 to 13 years, whole body and LS DXA scans were obtained within 1 year post-menarche. As TBS is optimized for adults and can be affected by body thickness, custom software provided unadjusted “rawTBS” and adjusted for tissue thickness “corrTBS” (TBS iNsight, Medimaps, France). Correlations evaluated menarcheal age and gynecological age as factors in LS bone mineral content (BMC), areal bone mineral density (BMD), and TBS.

Results

Lowest observed TBS exceeded 1.35 (rawTBS = 1.362; corrTBS = 1.352). Menarcheal age correlated negatively with rawTBS (r = − 0.34, p = 0.02), with a similar trend for corrTBS (r = − 0.29, p < 0.06). Gynecological age did not correlate with TBS but was positively correlated with LSBMD (r = + 0.37, p = 0.01). Correlations with body composition variables differed between rawTBS and corrTBS.

Conclusions

In this healthy cohort, “normal” adult TBS is present by 1 year post-menarche, 2 years before projected LS peak bone mass. Thus, TBS may be a useful bone architectural screen during the first post-menarcheal year, enabling intervention to improve structure prior to “peak bone mass”. Longitudinal studies are needed to elucidate TBS development and intervention response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom 18(3):309–330

    Article  PubMed  Google Scholar 

  2. Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, Hans D, Muschitz GK, Fahrleitner-Pammer A, Resch H (2015) TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone 79:259–266

    Article  PubMed  Google Scholar 

  3. Harvey NC, Gluer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A, Camargos BM, Reginster JY, Rizzoli R, Kanis JA (2015) Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78:216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, Kanis JA (2015) Adjusting fracture probability by trabecular bone score. Calcif Tissue Int 96(6):500–509

    Article  CAS  PubMed  Google Scholar 

  5. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Gluer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren O, Lorentzon M, Mellstrom D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948

    Article  PubMed  Google Scholar 

  6. Donaldson AA, Feldman HA, O'Donnell JM, Gopalakrishnan G, Gordon CM (2015) Spinal bone texture assessed by trabecular bone score in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 100(9):3436–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24(1):77–85

    Article  CAS  PubMed  Google Scholar 

  8. Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, Gluer CC, Roux C (2013) Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone 57(1):232–236

    Article  PubMed  Google Scholar 

  9. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26(11):2762–2769

    Article  PubMed  Google Scholar 

  10. Shawwa K, Arabi A, Nabulsi M, Maalouf J, Salamoun M, Choucair M, Hans D, El-Hajj Fuleihan G (2016) Predictors of trabecular bone score in school children. Osteoporos Int 27(2):703–710

    Article  CAS  PubMed  Google Scholar 

  11. McKay HA, Bailey DA, Mirwald RL, Davison KS, Faulkner RA (1998) Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr 133(5):682–687

    Article  CAS  PubMed  Google Scholar 

  12. Bernardoni B, Thein-Nissenbaum J, Fast J, Day M, Li Q, Wang S, Scerpella T (2014) A school-based resistance intervention improves skeletal growth in adolescent females. Osteoporos Int 25(3):1025–1032

    Article  CAS  PubMed  Google Scholar 

  13. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014 Mar) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530

    Article  PubMed  Google Scholar 

  14. Rockett HR (2005) Validity and reliability of the youth/adolescent questionnaire. J Am Diet Assoc 105(12):1867 author reply 1867-8

    Article  PubMed  Google Scholar 

  15. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26(8):1729–1739

    Article  PubMed  Google Scholar 

  16. Binkley N, Krueger D, Drezner MK (2007) Low vitamin D status: time to recognize and correct a Wisconsin epidemic. WMJ 106(8):466–472

    PubMed  Google Scholar 

  17. Committee to review dietary reference intakes for vitamin D and calcium, Institute of Medicine. Dietary reference intakes for calcium and vitamin D In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011; p. 363. Available from: http://nap.edu/13050

Download references

Acknowledgments

We are grateful for the assistance of Kristen Hendrickson and Dr. Brittney Bernardoni who worked as study coordinators for the first and second year of this longitudinal study, respectively. We appreciate the hard work and expertise of Jessie Libber, our study DXA technician. We acknowledge funding support from the UW Institute for Clinical and Translational Research (Clinical and Translational Science Award, NIH/NCATS 9U54TR000021) and from the UWHC Sports Medicine Classic Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodi N. Dowthwaite.

Ethics declarations

Parents of the girls provided informed consent, and girls provided informed assent to participate in the study, as outlined in the study protocol, approved by the home Institutional Review Board, in accordance with the Declaration of Helsinki.

Conflicts of interest

None. At the time of TBS analysis, Renaud Winzenrieth was employed by Medimaps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowthwaite, J.N., Winzenrieth, R., Binkley, N. et al. A focused evaluation of lumbar spine trabecular bone score in the first year post-menarche. Arch Osteoporos 12, 90 (2017). https://doi.org/10.1007/s11657-017-0388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-017-0388-2

Keywords

Navigation