Skip to main content

Advertisement

Log in

Clean-DM1, a Korean Polyherbal Formula, Improves High Fat Diet-Induced Diabetic Symptoms in Mice by Regulating IRS/PI3K/AKT and AMPK Expressions in Pancreas and Liver Tissues

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of Clean-DM1 (C-DM1), a polyherbal formulation of Radix Scrophulariae, Radix Astragali, Rhizoma Atractylodis, and Radix Salviae Miltiorrhizae, on high-fat diet (HFD)-induced diabetes mice.

Methods

The information about active components of C-DM1 extract and molecular mechanism was obtained from network pharmacology analysis. Main compounds of C-DM1 extract by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis were conducted for quality control. For in vivo study, mice were induced diabetes by HFD for 12 weeks. The mice in the normal group (Nor) were maintained with a regular diet and treated with saline by gavage. The HFD model mice were randomly divided into 3 groups, including a HFD diabetic model group, a C-DM1 extract-administered group (C-DM1, 500 mg/kg), and metformin-administered groups (Met, 500 mg/kg), 8 mice in each group. Food intake, body weight (BW), and fasting blood glucose (FBG) levels were recorded weekly for 4 weeks. After 4 weeks of treatment, alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood glucose, low-density lipoprotein cholesterol (LDL-C) were determined using an automated clinical chemistry analyzer, and homeostatic model for assessing insulin resistance (HOMA-IR) levels and oral glucose tolerance test (OGTT) were detected. The histopathological changes of liver and pancreatic tissues were observed by hematoxylin-eosin staining. Insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (AKT) and adenosine 5′-monophosphate-activated protein kinase (AMPK) expressions in liver and pancreas tissues were detected by Western blot analysis.

Results

HPLC-MS identified dihydroisotanshinone, dihydroisotanshinone I, cryptotanshinone, harpagoside, and atractyloside A in C-DM1 extract. The administration of C-DM1 extract significantly decreased body weight, calorie intake, and the levels of blood glucose and insulin in the diabetic mice (P<0.05 or P<0.01). The C-DM1 extract administration improved the impaired glucose tolerance and insulin resistance in the diabetic mice and significantly decreased the levels of LDL-C, ALT and AST (P<0.01). The C-DM1 extract inhibited the histopathological changes of fatty liver and hyperplasia of pancreatic islets in the diabetic mice. The C-DM1 extract significantly increased the phosphorylation of IRS, AKT, and AMPK and the expression of PI3K in pancreas and liver tissues (P<0.05 or P<0.01), which was consistent with the analysis results of network pharmacology.

Conclusion

C-DM1 extract improved diabetes symptoms in long-term HFD-induced mice by regulation of IRS/PI3K/AKT and AMPK expressions in pancreas and liver tissues, suggesting that C-DM1 formulation may help prevent the progression of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The Lancet 2017;389:2239–2251.

    Article  CAS  Google Scholar 

  2. Apovian CM, Okemah J, O’Neil PM. Considerations in the management of type 2 diabetes. Adv Ther 2019;36:44–58.

    Article  PubMed  Google Scholar 

  3. Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes 2021;14:3567–3602.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lian F, Ni Q, Shen Y, Yang S, Piao C, Wang J, et al. International traditional Chinese medicine guideline for diagnostic and treatment principles of diabetes. Ann Palliat Med 2020;9:2237–2250.

    Article  PubMed  Google Scholar 

  5. Kim XX, Li LX, Li YZ, An DJ, Li SR, Xu RP, et al. Textbook compilation committee. Herbology, 3nd ed; Seoul: Younglim: Academic Press; 1998:233,331,458,577.

    Google Scholar 

  6. WHO. ICD-11 for mortality and morbidity statistics, 26, Supplementary chapter traditional medicine conditions-module. Available at: https://icd.who.int/dev11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f718687701 (Accessed June 1, 2021).

  7. Zhang GB, Li QY, Chen QL, Su SB. Network pharmacology: a new approach for Chinese herbal medicine research. Evid Based Complement Alternat Med 2013;621423.

  8. Lu XY, Zhou FH, Dong YQ, Gong LN, Li QY, Tang L, et al. Codonopsis tangshen Oliv. amelioration effect on diabetic kidney disease rats induced by high fat diet feeding combined with streptozotocin. Nat Prod Bioprospect 2018;8:441–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang N, Li Z, Yu H, Liu G, Zhao H, Dong W, et al. Antidiabetic activity of Radix Scrophulariae and its split fraction. Pharmacol Clin Chin Materia Medica (Chin) 2016;32:55–60.

    Google Scholar 

  10. Chen Y, Chen J, Chou G. Research review on chemical constituent and pharmacological action of Rhizoma Atractylodis. Acad J Shanghai Univ Tradit Chin Med (Chin) 2006;20:95–98.

    CAS  Google Scholar 

  11. Duan G, Ouyang Z, Fan Y, Wu R, Han L. Studies on atractylodes polysaccharides on lowering blood glucose of mice. Chin Arch Tradit Chin Med (Chin) 2008;26:1211–1212.

    Google Scholar 

  12. Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, et al. Salvia miltiorrhiza in diabetes: a review of its pharmacology, phytochemistry, and safety. Phytomedicine 2019;58:152871.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang SB, Lee BH. Anti-obesity and antidiabetic effects of Nelumbinis Semen Powder in high-fat diet-induced obese C57BL/6 mice. Nutrients 2020;12:3576.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li S, Fan TP, Jia W, Lu A, Zhang W. Network pharmacology in traditional Chinese medicine. Evid Based Complement Alternat Med 2014;2014:138460.

    PubMed  PubMed Central  Google Scholar 

  15. Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 2014;61:B4890.

    PubMed  Google Scholar 

  16. Meng X, Ma J, Kang AN, Kang SY, Jung HW, Park YK. A novel approach based on metabolomics coupled with intestinal flora analysis and network pharmacology to explain the mechanisms of action of Bekhogainsam Decoction in the improvement of symptoms of streptozotocin-induced diabetic nephropathy in mice. Fron Pharmacol 2020;11:633.

    Article  CAS  Google Scholar 

  17. Xiao E, Luo L. Alternative therapies for diabetes: a comparison of Western and traditional Chinese medicine (TCM) approaches. Curr Diabetes Rev 2018;14:487–496.

    Article  PubMed  Google Scholar 

  18. Zhang Z, Zhang L, Xu H. Effect of Astragalus polysaccharide in treatment of diabetes mellitus: a narrative review. J Tradit Chin Med 2019;39:133–138.

    PubMed  Google Scholar 

  19. Chen X, Wang DD, Wei T, He SM, Zhang GY, Wei QL. Effects of astragalosides from Radix Astragali on high glucose-induced proliferation and extracellular matrix accumulation in glomerular mesangial cells. Exp Ther Med 2016;11:2561–2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pedro PF, Tsakmaki A, Bewick GA. The glucose tolerance test in mice. Methods Mol Biol 2020;2128:207–216.

    Article  CAS  PubMed  Google Scholar 

  21. Seong J, Kang JY, Sun JS, Kim KW. Hypothalamic inflammation and obesity: a mechanistic review. Arch Pharm Res 2019;42:383–392.

    Article  CAS  PubMed  Google Scholar 

  22. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 2009;5:150–159.

    CAS  PubMed  Google Scholar 

  23. Lee K, Han J, Kim SG. Increasing risk of diabetes mellitus according to liver function alterations in electronic workers. J Diabetes Investig 2014;5:671–676.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang HW, Son M, Choi J, Oh S, Jeon YJ, Byun K, et al. Ishige okamurae reduces blood glucose levels in high-fat diet mice and improves glucose metabolism in the skeletal muscle and pancreas. Fish Aquatic Sci 2020;23:24.

    Article  CAS  Google Scholar 

  25. Aboul-Mahasen LM, Abdulrahman AR. The possible protective effects of virgin olive oil and Nigella sativa seeds on the biochemical and histopathological changes in pancreas of hyperlipidaemic rats. Folia Morphol (Warsz) 2019;78:762–772.

    Article  CAS  PubMed  Google Scholar 

  26. Ho CK, Sriram G, Dipple KM. Insulin sensitivity predictions in individuals with obesity and type II diabetes mellitus using mathematical model of the insulin signal transduction pathway. Mol Genet Metab 2016;119:288–292.

    Article  CAS  PubMed  Google Scholar 

  27. Rahman MS, Hossain KS, Das S. Role of insulin in health and disease: an update. Int J Mol Sci 2021;22:6403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liou CJ, Lee YK, Ting NC, Chen YL, Shen SC, Wu SJ, et al. Protective effects of Licochalcone A ameliorates obesity and non-alcoholic fatty liver disease via promotion of the Sirt-1/AMPK pathway in mice fed a high-fat diet. Cells 2019;8:447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee ES, Kwon MH, Kim HM, Woo HB, Ahn CM, Chung CH. Curcumin analog CUR5-8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism 2020;103:154015.

    Article  CAS  PubMed  Google Scholar 

  30. Borén J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 2013;274:25–40.

    Article  PubMed  Google Scholar 

  31. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 2016;126:12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Singh H, Ganneru S, Malakapalli V, Chalasani M, Nappanveettil G, Bhonde RR, et al. Islet adaptation to obesity and insulin resistance in WNIN/GR-Ob rats. Islets 2014;6:e998099.

    Article  PubMed  Google Scholar 

  33. Beale EG. Insulin signaling and insulin resistance. J Investig Med 2013;61:11–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell 2017;169:381–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ueda-Wakagi M, Hayashibara K, Nagano T, Ikeda M, Yuan S, Ueda S, et al. Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways. Food Funct 2018;9:4223–4233.

    Article  CAS  PubMed  Google Scholar 

  36. Dinda B, Dinda M, Roy A, Dinda S. Dietary plant flavonoids in prevention of obesity and diabetes. Adv Protein Chem Struct Biol 2020;120:159–235.

    Article  CAS  PubMed  Google Scholar 

  37. Bähr I, Bazwinsky-Wutschke I, Wolgast S, Hofmann K, Streck S, Mühlbauer E, et al. GLUT4 in the endocrine pancreas—indicating an impact in pancreatic islet cell physiology? Horm Metab Res 2012;44:442–450.

    Article  PubMed  Google Scholar 

  38. Zhang J, Liu F. Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life 2014;66:485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA. Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 2001;108:1631–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tao R, Gong J, Luo X, Zang M, Guo W, Wen R, et al. AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 2010;5:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Liu Y and Wang P contributed equally in this manuscript and completed first draft. Jung HW and Park YK as co-correspondences conceptualized the experiments; Liu Y, Wang P, Kang SY, Ho T and Lee KJ performed in vivo experiments and analyzed the data. Meng X, Lyu C and Han X analyzed network pharmacology and performed HPLC analysis. Jung HW, Park YK and Meng X reviewed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hyo Won Jung.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Supported by Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), the Ministry of Health & Welfare, Republic of Korea (No. HF20C0121), Shanxi Key Laboratory of Tradition Herbal Medicines Processing (No. 20210901), and the Innovation Team of Shanxi University of Chinese Medicine (No. 2022TD1014)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, Y., Kang, S.Y. et al. Clean-DM1, a Korean Polyherbal Formula, Improves High Fat Diet-Induced Diabetic Symptoms in Mice by Regulating IRS/PI3K/AKT and AMPK Expressions in Pancreas and Liver Tissues. Chin. J. Integr. Med. 30, 125–134 (2024). https://doi.org/10.1007/s11655-023-3548-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3548-9

Keywords

Navigation