Skip to main content

Advertisement

Log in

Evidence-Based Dampness-Heat ZHENG (Syndrome) in Cancer: Current Progress toward Establishing Relevant Animal Model with Pancreatic Tumor

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the “amassment and accumulation”. Emerging perspectives define the core pathogenesis of pancreatic cancer as “dampness-heat” and the respective treatment “clearing heat and resolving dampness” has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021;71:7–33.

    PubMed  Google Scholar 

  2. American Cancer Society. Cancer facts & figures 2020. Atlanta: American Cancer Society 2020.

    Google Scholar 

  3. Sui X, Guo Y, Ni W, Jin H, Lin H, Xie T. Molecular profiling analysis for colorectal cancer patients with Pi-Xu or Shi-Re syndrome. Integr Med Res 2019;8:21–25.

    PubMed  Google Scholar 

  4. Sun L, Mao JJ, Yan Y, Xu Y, Yang Y. Patient reported traditional Chinese medicine spleen deficiency syndrome (TCM-SDS) scale for colorectal cancer: development and validation in China. Integr Cancer Ther 2021;20:15347354211020105.

    PubMed  PubMed Central  Google Scholar 

  5. Liu XD, Gao H, Tang GY. Exploration of correlativity between TCM syndrome differentiation typing and prognosis of pancreatic cancer. Shanxi J Tradit Chin Med (Chin) 2018;34:44–46.

    CAS  Google Scholar 

  6. Liu LM. Opportunities and challenges of integrating traditional Chinese medicine with Western medicine for pancreatic cancer. Chin J Integr Tradit West Med (Chin) 2019;39:18–20.

    Google Scholar 

  7. Hua YQ, Liu LM, Chen Z, Meng ZQ, Chen H, Wang P. Modern interpretation of the theoretical system of Chinese medicine syndrome treatment in pancreatic cancer. Chin J Integr Tradit West Med (Chin) 2019;39:107–110.

    Google Scholar 

  8. Oncology Branch, China Association of Chinese Medicine. Guidelines for the diagnosis and treatment of panceatic cancer (Draft). International Tumor Academic Conference 2007 of Chinese Medicine 2007:426–429.

  9. Jiang M, Zhang C, Zheng G, Guo H, Li L, Yang J, et al. Traditional Chinese medicine zheng in the era of evidence-based medicine: a literature analysis. Evid Based Complement Alternat Med 2012;2012:409568.

    PubMed  PubMed Central  Google Scholar 

  10. Dai HY, Wang P, Feng LY, Liu LM, Meng ZQ, Zhu XY, et al. The molecular mechanisms of traditional Chinese medicine ZHENG on pancreatic tumor growth. Integr Cancer Ther 2010;9:291–297.

    CAS  PubMed  Google Scholar 

  11. Wang SJ, Wei AL. Exploring the pathogenesis and therapy of liver cancer from “damp-heat insidious pathogen” to “cancer toxin”. Chin J Integr Tradit West Med (Chin) 2013;33:266–269.

    Google Scholar 

  12. Chen Y, Jiang TH, Ru WZ, Mao AW, Liu Y. Objective tongue inspection on 142 liver cancer patients with damp-heat syndrome. Chin J Integr Med 2014;20:585–590.

    PubMed  Google Scholar 

  13. Chen Z, Qian X, Zhang AQ, Fu XX, Zhen HD. Correlation between different TCM syndrome types of pancreatic cancer and their prognosis based on structural characteristic of intestinal flora. Zhejiang J Integr Tradit Chin West Med (Chin) 2019;29:965–969.

    Google Scholar 

  14. Yang X, Hao J, Zhu CH, Niu YY, Ding XL, Liu C, et al. Survival benefits of western and traditional Chinese medicine treatment for patients with pancreatic cancer. Medicine (Baltimore) 2015;94:e1008.

    PubMed  Google Scholar 

  15. Song LB, Liu LM, Chen H, Chen Z, Meng ZQ, Hua YQ, et al. Restrospective study of 232 post-operative patients with pancreatic cancer treated by modified Qingyi Huaji Formula combined with Western medicine. Chin J Integr Tradit West Med (Chin) 2018;38:932–935.

    Google Scholar 

  16. Xu YL, Gao S, Liu LM, Chen Z, Meng ZQ, Lin JH, et al. Clinical analysis on 20 cases of long-term survival patients with advanced pancreatic cancer. Chin J Tradit Chin Med Pharm (Chin) 2014;28:2679–2681.

    Google Scholar 

  17. Yang XB, Long SQ, Wu WY, Deng H, Pan ZQ, He WF, et al. The distribution of Chinese medicine syndrome types in primary liver cancer and their differences of the survival time: a clinical study. Chin J Integr Tradit West Med (Chin) 2013;33:911–914.

    Google Scholar 

  18. Liu X, Li N. Regularity analysis on clinical treatment in primary liver cancer by traditional Chinese medicine. China J Chin Mater Med (Chin) 2012;37:1327–13231.

    Google Scholar 

  19. Yang Y, Ye XR. The role of internal damp-heat injury in the pathogenesis of colorectal cancer. Chin J Ethnomed Ethnopharm (Chin) 2019;28:49–52.

    Google Scholar 

  20. Li Y, Gu J, Zhou H, Yang W, Guo Y, Wang H, et al. Traditional Chinese medicine symptom patterns in patients with colorectal carcinoma. J Tradit Chin Med 2018;38:299–308.

    PubMed  Google Scholar 

  21. Yang MD, Chen XL, Xie XZ, Zhou WJ, Hu XQ, Ji Q, et al. TCM syndromes distribution of liver cancer and colorectal cancer with “cifferent diseases with same syndrome” and its association with clinical laboratory indicators. Mod Tradit Chin Med Mater Med-World Sci Technol (Chin) 2019;21:2461–2468.

    Google Scholar 

  22. Wei D, Huo M, Yang Y, Zhang B, Zhang Y, Tian F, et al. Clinical effect of dispersing turbid damp on the damp-heat subtype of advanced lung cancer. Baodin No.1 Hosp Trandit Chin Med 2020 2020-09-11.

  23. Zou XM, Wu Y, Wu H. Mechanism of Sanren decoction on gastric precancerous lesions in model rats with spleen-stomach damp-heat syndrome. Yunnan J Tradit Chin Med Mater Med (Chin) 2020;41:63–66.

    Google Scholar 

  24. Zhang LR. Therapeutic effect observation of Sanren decoction on dampness and heat type of cancerous fever [Dissertation]. Fuzhou: Fujian University Tranditional Chinese Medicine; 2021.

    Google Scholar 

  25. Xie DF, Zhou ZH, Chen ZY, Liu ZY, Si Tu HL, Wang N, et al. Research advances on the relevance between cancer development and dampness-heat syndrome. Global Tradit Chin Med (Chin) 2019;12:1949–1954.

    CAS  Google Scholar 

  26. Tian L, Lin CL, Sun YM, Ke X, Huang MH, Yang CB. Analysis of mechinism of inflammation-cancer transformation from damp-heat theory. J Beijing Univ Tradit Chin Med (Chin) 2021;44:215–220.

    Google Scholar 

  27. Wang FJ, Wang P, Chen LY, Geng YW, Chen H, Meng ZQ, et al. TAM infiltration differences in “tumor-first” and “Zheng-first” models and the underlying inflammatory molecular mechanism in pancreatic cancer. Integr Cancer Ther 2018;17:707–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Z, Wang P. Clinical distribution and molecular basis of traditional Chinese medicine Zheng in cancer. Evid Based Complement Alternat Med 2012;2012:783923.

    PubMed  PubMed Central  Google Scholar 

  29. Xie GQ, Zhang YH, Guo XD, H. H, Hua YQ, Qian P. Study on diversity of gut microbiome in pancreatic cancer patients with damp-heat syndrome based on high-throughput sequencing technology. Shanghai J Tradit Chin Med (Chin) 2019;53:9–16.

    Google Scholar 

  30. Cui TJ, Chen YQ, Dai YM. Study of the correlation between the colorectal cancer Chinese medicine syndrome types and (excision repair cross-complementing 1, ERCC1) gene polymorphisms. Chin J Integr Tradit West Med (Chin) 2012;32:628–632.

    CAS  Google Scholar 

  31. Hu XQ, Wei B, Song YN, Ji Q, Li Q, Luo YQ, et al. Plasma metabolic profiling on postoperative colorectal cancer patients with different traditional Chinese medicine syndromes. Complement Ther Med 2018;36:14–19.

    PubMed  Google Scholar 

  32. Dong W, Tang XL, Shang GB, Xu GL, Zhu WF, Liu HN. Dampness-heat accelerates DMBA-induced mammary tumors in rats. Chin J Integr Med 2018;24:758–762.

    CAS  PubMed  Google Scholar 

  33. Yang SF, Qiu SP, Liu QH. Observation of serum protein fingerprinting in primary liver cancer patients of different Chinese medical syndromes before and after interventional treatment. Chin J Integr Tradit West Med (Chin) 2013;33:1352–1355.

    CAS  Google Scholar 

  34. Ji Q, Luo YQ, Wang WH, Liu X, Li Q, Su SB. Research advances in traditional Chinese medicine syndromes in cancer patients. J Integr Med 2016;14:12–21.

    PubMed  Google Scholar 

  35. Lee WY, Lee CY, Kim YS, Kim CE. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules 2019;9:362.

    PubMed  PubMed Central  Google Scholar 

  36. Yu YN, Liu J, Zhang L, Wang Z, Duan DD, Wang YY. Clinical zheng-hou pharmacology: the missing link between pharmacogenomics and personalized medicine? Curr Vasc Pharmacol 2015;13:423–432.

    CAS  PubMed  Google Scholar 

  37. Qian X, Chen Z, Chen SS, Liu LM, Zhang AQ. Integrated analyses identify immune-related signature associated with Qingyihuaji Formula for treatment of pancreatic ductal adenocarcinoma using network pharmacology and weighted gene co-expression network. J Immunol Res 2020;2020:7503605.

    PubMed  PubMed Central  Google Scholar 

  38. Fu M, Liu Y, Cheng H, Xu K, Wang G. Coptis chinensis and dried ginger herb combination inhibits gastric tumor growth by interfering with glucose metabolism via LDHA and SLC2A1. J Ethnopharmacol 2022;284:114771.

    CAS  PubMed  Google Scholar 

  39. Wang N, Feng Y, Tan HY, Cheung F, Hong M, Lao L, et al. Inhibition of eukaryotic elongation factor-2 confers to tumor suppression by a herbal formulation Huanglian-Jiedu decoction in human hepatocellular carcinoma. J Ethnopharmacol 2015;164:309–318.

    CAS  PubMed  Google Scholar 

  40. Zhang Q, Liu J, Li R, Zhao R, Zhang M, Wei S, et al. A network pharmacology approach to investigate the anticancer mechanism and potential active Ingredients of Rheum palmatum L. against lung cancer via induction of apoptosis. Front Pharmacol 2020;11:528308.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Qi X, Guo Z, Chen Q, Lan W, Chen Z, Chen W, et al. A data mining-based analysis of core herbs on different patterns (Zheng) of non-small cell lung cancer. Evid Based Complement Alternat Med 2021;2021:3621677.

    PubMed  PubMed Central  Google Scholar 

  42. Gong G, Huang J, Yang Y, Qi B, Han G, Zheng Y, et al. Saussureae Involucratae Herba (Snow Lotus): review of chemical compositions and pharmacological properties. Front Pharmacol 2019;10:1549.

    CAS  PubMed  Google Scholar 

  43. Qin Y, Quan HF, Zhou XR, Chen SJ, Xia WX, Li H, et al. The traditional uses, phytochemistry, pharmacology and toxicology of Dictamnus dasycarpus: a review. J Pharm Pharmacol 2021;73:1571–1591.

    PubMed  Google Scholar 

  44. Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 2017;12:20.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao Y, Chen S, Sun J, Su S, Yang D, Xiang L, et al. Traditional Chinese medicine may be further explored as candidate drugs for pancreatic cancer: a review. Phytother Res 2020;35:603–628.

    PubMed  Google Scholar 

  46. Liu J, Luo X, Guo R, Jing W, Lu H. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. J Proteome Res 2020;19:3825–3836.

    CAS  PubMed  Google Scholar 

  47. Cheng CS, Tan HY, Wang N, Chen L, Meng Z, Chen Z, et al. Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression. Clin Transl Med 2021;11:e467.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Yao Y, Fu Y, Yuan Z, Wu X, Wang T, et al. Inhibition effect of oxyepiberberine isolated from Coptis chinensis Franch. on non-small cell lung cancer based on a network pharmacology approach and experimental validation. J Ethnopharmacol 2021;278:114267.

    CAS  PubMed  Google Scholar 

  49. Chen F, Pan Y, Xu J, Liu B, Song H. Research progress of matrine’s anticancer activity and its molecular mechanism. J Ethnopharmacol 2022;286:114914.

    CAS  PubMed  Google Scholar 

  50. Chen LY. The role of cancer associated fibroblasts (CAFs) in pancreatic cancer treated by Qingrehuashi herbal medicine [Dissertation]. Shanghai: Fudan University; 2013.

    Google Scholar 

  51. Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther 2014;8:1911–1921.

    PubMed  PubMed Central  Google Scholar 

  52. Yin H, Liu HL. Animal models of pancreatic cancer. Chin J Gastroenterol (Chin) 2015;20:109–112.

    Google Scholar 

  53. Qian WK, Duan WX, Ma QY. Research advances on animal model of pancreatic cancer. Chin J Pancreatol (Chin) 2017;17:364–366.

    Google Scholar 

  54. Boj SF, Hwang CI, Baker LA, Chio, II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015;160:324–338.

    CAS  PubMed  Google Scholar 

  55. Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 2010;39:425–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Song HK, Hwang DY. Use of C57BL/6N mice on the variety of immunological researches. Lab Anim Res 2017;33:119–123.

    PubMed  PubMed Central  Google Scholar 

  57. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, Griswold DP, Jr., et al. Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 1984;44:717–726.

    CAS  PubMed  Google Scholar 

  58. Waters AM, Der CJ. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med 2018;8:a031435.

    PubMed  PubMed Central  Google Scholar 

  59. Inga E, Perdomo Zaldivar E, Gomez M, Cano T, Rodriguez Alonso B, Ortiz M, et al. Impact of KRAS mutations in clinical features and survival in pancreatic cancer patients: a single institution experience. Ann Oncol 2019;30 Suppl 4:iv94.

    Google Scholar 

  60. Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020;17:153–168.

    CAS  PubMed  Google Scholar 

  61. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437–450.

    CAS  PubMed  Google Scholar 

  62. Ren RJ, Du CC, Li XQ, Hong K, Yin T, Shen JY, et al. Development and significance of TCM syndrome model. Chin J Inf Tradit Chin Med (Chin) 2018;25:8–10.

    Google Scholar 

  63. Wang JY, Gao JL, Wang J. Overview of animal model research in integration of disease and syndrome. World Sci Technol Mod Tradit Chin Med Mater Med (Chin) 2020;22:2160–2164.

    Google Scholar 

  64. Peng ZN, Xing YF, Pang XX, Zhang YG, Shi XJ, Han JR. Research progress on animal model combining disease and syndrome. World Sci Technol Mod Tradit Chin Med Mater Med (Chin) 2020;22:2211–2216.

    Google Scholar 

  65. Liao YX, An D, Shi ZW. Research progress and problems of animal models of damp-heat syndrome in traditional Chinese medicine. J Pract Tradit Chin Intern Med (Chin) 2020;34:94–97.

    Google Scholar 

  66. Wang Y, Wu ML, Zheng FL, Liu S, Luo HH. Overview of research for experimental animal models of damp-heat syndrome. J Guangzhou Univ Tradit Chin Med (Chin) 2020;37:823–827.

    Google Scholar 

  67. Xie J, Zhou YQ, Zheng FL, Luo HH. Study on expression of inflammatory factors and aquaporin in animal model of damp-heat syndrome. Chin Arch Tradit Chin Med (Chin) 2018;36:2163–2166.

    CAS  Google Scholar 

  68. Wang T, Zheng FL, Luo HH. Establishment of febrile disease damp-heat syndrome mice models in south of the five ridges and analysis on intestinal flora. Chin Arch Tradit Chin Med (Chin) 2017;35:1361–1365.

    CAS  Google Scholar 

  69. Zhu M, He QH, Xun JN. Research progress on disease and syndrome combined animal models with TCM damp-heat syndrome. Chin J Tradit Chin Med and Pharm (Chin) 2017;32:656–658.

    CAS  Google Scholar 

  70. Guo JL, Yan ZH. Experimental study on the pathological model of damp obstruction. J Tradit Chin Med (Chin) 1988:59–61.

  71. Wang XH, Liu SC, Peng SQ, Lu NQ. Experimental researches on pathological model of damp-heat syndrome (DHZ) of seasonal febrile disease. J Guangzhou Univ Tradit Chin Med (Chin) 1990;3:182–186.

    Google Scholar 

  72. Wu SJ, Yang YG, Yang QH, Tong L, Liu LC, Jiang H, et al. Effect of heatness-clearing and wetness-removing therapy on animal model of wetness-heatness syndrome. Chin J Integr Tradit West Med Dig (Chin) 1999;4:200–202.

    Google Scholar 

  73. Zhang X, Lei JS, Ding ZG. Reconstruction of cholelithiasis model with the syndrome of damp-heat accumulation. J Hunan Coll Tradit Chin Med (Chin) 2002:4–6.

  74. Guo MY, Yan X. Study on animal model with seasonal febrile disease (SFD) symptom of wetness evil over heat evil (WEOHE). J Chengdu Univ Tradit Chin Med (Chin) 2003;1:33–36,63.

    Google Scholar 

  75. Mu L, Wei LB, Luo BD, Li X, Tong L, Chen YY. Changes of IL-1, IL-2, IL-6 in rats with experimental large intestine damp-heat syndrome model. Chin J Integr Tradit West Med Dig (Chin) 2003:262–263.

  76. Yan X, Guo MY. Observation on pathological changes of tongue in rats with febrile disease of dampness-over-heat syndrome. J Anhui Tradit Chin Med Coll (Chin) 2005:19–21.

  77. Liao RX, Wu SJ, Wen XM, Wen B. Study on the changes of serum MTL and GAS in the heat biased or no biased model of rats with damp-heat in spleen and stomach. Zhejiang J Tradit Chin Med (Chin) 2005;4:35–37.

    Google Scholar 

  78. Tan YZ, Chen PC, Li YP, Wu KG, Li CH, Huang H, et al. Study on the expression of aquaporin 2 in damp or heat biased model of rat with damp-heat in spleen and stomach. Shaanxi J Tradit Chin Med (Chin) 2009;30:619–21.

    Google Scholar 

  79. Wang MX, Hu YL, Xu P. Effect of Liangpu Qingwei Capsule on expression of TNF-α and IL-1 β in serum of chronic gastritis model rats with splenogastric hygropyrexia syndrome. Hubei J Tradit Chin Med (Chin) 2015;37:6–8.

    Google Scholar 

  80. Wu HB, She SF, Lan SY. Effect of the Yin-zhi-huang injection on the expression of NTCP and BSEP of rats with damp-heat syndrome caused by cholestasis in the liver. Lishizhen Med Mater Med Res (Chin) 2015;26:2318–2321.

    Google Scholar 

  81. Wang RQ, Guo C, Wang ZW, Wu YH, Niu TH, Wu GT. Establishment and evaluation on rats model of antibiotic related large intestine dampness-heat syndrome induced by internal and external factors. J Tradit Chin Vet Med (Chin) 2019;38:5–10.

    CAS  Google Scholar 

  82. Chen Z, Chen LY, Wang P, Dai HY, Gao S, Wang K. Tumor microenvironment varies under different TCM Zheng models and correlates with treatment response to herbal medicine. Evid Based Complement Alternat Med 2012;2012:635702.

    PubMed  PubMed Central  Google Scholar 

  83. Yao DP. Research on syndrome distribution disciplinarian of pancreatic cancer [Dissertation]. Beijing: Beijing University of Chinese Medicine; 2015.

    Google Scholar 

  84. Liu B, Zhang PT. Review on the syndrome research of pancreatic cancer. J Tradit Chin Med (Chin) 2018;59:1342–1345.

    Google Scholar 

  85. Wang T, Wu CY, Yang T. Syndrome character study of 278 pancreas cancer cases. Chin J Exp Tradit Med Formulae (Chin) 2016;22:220–223.

    Google Scholar 

  86. Jing J, L. WR, Wang ZX, Sun YQ, Yu SM, Wang LF, et al. Educational thinking mode of combining macro and micro syndrome differentiation of TCM in the context of precision medicine. J Tradit Chin Med (Chin) 2020;61:453–455.

    Google Scholar 

  87. Liu B. Preliminary study on the characteristics of damp syndrome and its quantitative diagnostic criteria in patients with pancreatic cancer [Dissertation]. Beijing: China Academy of Chinese Medical Sciences; 2019.

    Google Scholar 

  88. Huang NN, Sun XQ, Yang Q, Li XY, Sun R. Research on rat models of acute liver injury with syndrome of liver depression and spleen deficiency. China J Chin Mater Med (Chin) 2016;41:4400–4407.

    Google Scholar 

  89. Fang ZQ, Pan ZQ, Lu WL, Liu XM, Guan DY, Liang C. Methodology and purposes of establishing mouse and rat models for syndrome differentiation and treatment. J Chin Integr Med (Chin) 2009;7:907–912.

    Google Scholar 

  90. Kanawong R, Obafemi-Ajayi T, Ma T, Xu D, Li S, Duan Y. Automated tongue feature extraction for Zheng classification in traditional chinese medicine. Evid Based Complement Alternat Med 2012;2012:912852.

    PubMed  PubMed Central  Google Scholar 

  91. Wang P, Chen Z. Traditional Chinese medicine Zheng and omics convergence: a systems approach to post-genomics medicine in a global world. OMICS 2013;17:451–459.

    CAS  PubMed  Google Scholar 

  92. Qi Q, Zhuang L, Shen Y, Geng Y, Yu S, Chen H, et al. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy. Cancer 2016;122:2158–67.

    PubMed  Google Scholar 

  93. Xu WW, Ren QL, Hong DD. Analysis of damp-heat syndrome from the perspective of system biology and traditional Chinese medicine holistic view. Guid J Tradit Chin Med Pharm (Chin) 2019;25:5–9.

    Google Scholar 

  94. Huang J, Lok V, Ngai CH, Zhang L, Yuan J, Lao XQ, et al. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology 2021;160:744–754.

    PubMed  Google Scholar 

  95. Quoc Lam B, Shrivastava SK, Shrivastava A, Shankar S, Srivastava RK. The impact of obesity and diabetes mellitus on pancreatic cancer: molecular mechanisms and clinical perspectives. J Cell Mol Med 2020;24:7706–7716.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 2020;183:1848–66.e26.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Watkins J, Simpson A, Betts JA, Thompson D, Holliday A, Deighton K, et al. Galactose ingested with a high-fat beverage increases postprandial lipemia compared with glucose but not fructose ingestion in healthy men. J Nutr 2020;150:1765–1772.

    PubMed  PubMed Central  Google Scholar 

  98. Guimarães VHD, Lelis DF, Oliveira LP, Borém LMA, Guimarães FAD, Farias LC, et al. Comparative study of dietary fat: lard and sugar as a better obesity and metabolic syndrome mice model. Arch Physiol Biochem 2020;11:1–11.

    Google Scholar 

  99. Gelineau RR, Arruda NL, Hicks JA, Monteiro De Pina I, Hatzidis A, Seggio JA. The behavioral and physiological effects of high-fat diet and alcohol consumption: sex differences in C57BL6/J mice. Brain Behav 2017;7:e00708.

    PubMed  PubMed Central  Google Scholar 

  100. Yang Y. Thinking about some key problems in establishing traditional Chinese medicine syndrome model. China J Tradit Chin Med Pharm (Chin) 2016;31:3869–3871.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Chen Z (http://orcid.org/0000-0002-4502-0801) conceptualized and organized this review, Jiao JY (https://orcid.org/0000-0003-4435-9931) analyzed literature and drafted the manuscript, Chen CS revised the manuscript, Cao ZQ and Chen LY collected literature. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhen Chen.

Ethics declarations

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Supported by the National Natural Science Foundation of China (No. 81930115)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Jy., Cheng, Cs., Cao, Zq. et al. Evidence-Based Dampness-Heat ZHENG (Syndrome) in Cancer: Current Progress toward Establishing Relevant Animal Model with Pancreatic Tumor. Chin. J. Integr. Med. 30, 85–95 (2024). https://doi.org/10.1007/s11655-022-3675-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3675-8

Keywords

Navigation