Skip to main content

Advertisement

Log in

Targeting tumor-associated macrophages by anti-tumor Chinese materia medica

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ostuni R, Kratochvill F, Murray PJ, Natoli, G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 2015;36:229–239.

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metast Rev 2006;25:315–322.

    Article  Google Scholar 

  3. Sica A, Saccani A, Mantovani A, Allavena P, Sica, A. Tumorassociated macrophages: a molecular perspective. Int immunopharmacol 2002;2:1045–1054.

    Article  CAS  PubMed  Google Scholar 

  4. Schmieder A, Michel J, Schonhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 2012;22:289–297.

    Article  CAS  PubMed  Google Scholar 

  5. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opinion Pharmacol 2013;13:595–601.

    Article  CAS  Google Scholar 

  7. Gao J, Tongchuan H, Yingbo L, Wang YT. A traditional Chinese medicine formulation consisting of Rhizoma Corydalis and Rhizoma Curcumae exerts synergistic anti-tumor activity. Oncol Rep 2009;22:1077–1083.

    CAS  PubMed  Google Scholar 

  8. Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC. Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 2000;60:5857–5861.

    CAS  PubMed  Google Scholar 

  9. Bolli E, Movahedi K, Laoui D, Van Ginderachter JA. Novel insights in the regulation and function of macrophages in the tumor microenvironment. Curr Opinion oncol 2017;29:55–61.

    Article  CAS  Google Scholar 

  10. Yang XW. Discovery strategy for effective and active constituents of Chinese material medica based on processes of metabolism and disposition in intra-body. China J Chin Mater Med (Chin) 2007;5:001.

    Article  Google Scholar 

  11. Kyrn PS. On didirectionally regulated effects of traditional Chinese materia medica [dissertation]. Jinan: Shandong University of Traditional Chinese Medicine; 2003.

    Google Scholar 

  12. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 2004;4:2157–2184.

    Article  CAS  Google Scholar 

  13. Li J, Guo Q, Lin H. Regulating effects and molecular mechanisms of traditional Chinese medicine in the tumor immune suppressive environment. World Chin Med (Chin) 2014;9:845–850.

    CAS  Google Scholar 

  14. Zhao F, Liu P. Progress of study on action mechanisms of TCM in anti-tumor and preventing metastasis of tumor. Chin J Integr Tradit West Med (Chin) 2007;27:178–181.

    Google Scholar 

  15. Xu T, Xu RA. Progress on Anti-tumor mechanism of Chinese medicine and its active ingredients. J Huaqiao Univ ( Natural Sci, Chin) 2009;30:360–365.

    Google Scholar 

  16. Zhang X, Zhou F. Anti-tumor traditional Chinese medicine research progress. J Liaoning Univ Tradit Chin Med (Chin) 2012;14:142–144.

    Google Scholar 

  17. Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A. Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 2004;14:155–160.

    Article  CAS  PubMed  Google Scholar 

  18. Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Letters 2013;341:80–96.

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN. Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013;2013:486912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mueller CK, Schultze-Mosgau S. Histomorphometric analysis of the phenotypical differentiation of recruited macrophages following subcutaneous implantation of an allogenous acellular dermal matrix. Int J Oral Maxillof Surg 2011;40:401–407.

    Article  CAS  Google Scholar 

  21. Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 2015;212:435–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012;33:119–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008;8:958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008;13:453–461.

    Article  CAS  PubMed  Google Scholar 

  25. Sun P, Wang Y. Tumor-associated macrophages development and treatment of tumor. Cancer Res Prev Treat 2014;41:829–833.

    CAS  Google Scholar 

  26. Wang H, Wang X, Li X, Fan YC, Li GS, Guo C, et al. CD68+HLADR+ M1-like macrophages promote motility of HCC cells via NFkappaB/ FAK pathway. Cancer Letters 2014;345:91–99.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Martin L, Estecha A, Samaniego R, Sanchez-Ramon S, Vega MA, Sanchez-Mateos P. The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood 2011;117:88–97.

    Article  CAS  PubMed  Google Scholar 

  28. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008;453:807–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, et al. P50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 2006;66:11432–11440.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, He F, Feng F, Liu XW, Dong GY, Qin HY, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 2010;70:4840–4849.

    Article  CAS  PubMed  Google Scholar 

  31. Jinushi M, Komohara Y. Tumor-associated macrophages as an emerging target against tumors: creating a new path from bench to bedside. Bba-Rev Cancer 2015;1855:123–130.

    CAS  Google Scholar 

  32. Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology 2013;218:1402–1410.

    Article  CAS  PubMed  Google Scholar 

  33. Pesic M, Greten FR. Inflammation and cancer: tissue regeneration gone awry. Curr Opinion Cell Biol 2016;43:55–61.

    Article  CAS  PubMed  Google Scholar 

  34. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncolhematol 2008;66:1–9.

    Article  Google Scholar 

  35. Mantovani A, Bottazzi B, Colotta F, Porta C, Mantovani A. The origin and function of tumor-associated macrophages. Immunol Today 1992;13:265–270.

    Article  CAS  PubMed  Google Scholar 

  36. Partecke LI, Gunther C, Hagemann S, Jacobi C, Merkel M, Sendler M, et al. Induction of M2-macrophages by tumour cells and tumour growth promotion by M2-macrophages: a quid pro quo in pancreatic cancer. Pancreatology 2013;13:508–516.

    Article  CAS  PubMed  Google Scholar 

  37. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2013;73:1128–1141.

    Article  CAS  PubMed  Google Scholar 

  38. Lunardi S, Muschel RJ, Brunner TB, Belt BA, Zhu Y, Sanford DE, et al. The stromal compartments in pancreatic cancer: are there any therapeutic targets. Cancer Lett 2014;343:147–155.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Hao Y, Zhang Y, Xie W, Li J, Xue XO. Berberine inhibits tumorassociated macrophages in subcutaneous tumor of mice. Chin J Histochem Cytochem (Chin) 2011;20:203–206.

    CAS  Google Scholar 

  40. Wang Y. Berberine exerts its anti-tumor effects by targeting cancer cells as well as interfering with the tumor microenvironment in prostate cancer [dissertation]. Jinan: School of Medicine, Shandong University; 2011.

    Google Scholar 

  41. Hong M, Wang N, Tan HY, Tsao SW, Feng YB. MicroRNAs and Chinese medicinal herbs: new possibilities in cancer therapy. Cancers 2015;7:1643–1657.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jang JY, Lee JK, Jeon YK, Kim CW. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer 2013;13:421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yu P. Anti-inflammatory activitier of Praeruptorins and their molecular mechanisms of action [dissertation]. Guangdong: School of Pharmacy, Sourthern Medical University; 2013.

    Google Scholar 

  44. Fritz H, Kennedy DA, Ishii M, Fergusson D, Fernandes R, Cooley K, et al. Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther 2015;14:201–211.

    Article  CAS  PubMed  Google Scholar 

  45. Shao B, Xu W, Dai H, Tu PF, Li HJ, Gao XM. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophy Res Commun 2004;320:1103–1111.

    Article  CAS  Google Scholar 

  46. Sekhon BK, Sze DM, Chan WK, Fan K, Li GQ, Moore DE, et al. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment. Food Chem 2013;138:2201–2209.

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh D, Maiti TK. Effects of native and heat-denatured Abrus agglutinin on tumor-associated macrophages in Dalton's lymphoma mice. Immunobiology 2007;212:667–673.

    Article  CAS  PubMed  Google Scholar 

  48. Woo SM, Choi YK, Cho SG, Sunju Park SJ, Ko SG. A new herbal formula, KSG-002, suppresses breast cancer growth and metastasis by targeting NF-κB-dependent TNFα production in macrophages. Evid Based Complement Alternat Med 2013:1–10.

    Google Scholar 

  49. Qian X. Intervention of QHBJ prescription with the biological effects of COX-2/5-LOX metabolic pathway of arachidonic acid on ovarian carcinogenesis induced by DMBA in rats [dissertation]. Hangzhou: College of Pharmaceutical Sciences, Zhejiang University; 2012.

    Google Scholar 

  50. Lin X, Yi Z, Diao J, Shao M, Zhao L, Cai HB, et al. Shaoyao Decoction ameliorates colitis-associated colorectal cancer by downregulating proinflammatory cytokines and promoting epithelialmesenchymal transition. J Transl Med 2014;12:105.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lam W, Jiang Z, Guan J, Huang X, Hu R, Wang J, et al. PHY906 (KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep 2015;5:9384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Yao F, Chai Y, Dong N, Sheng ZY, Yao YM. Xuebijing Injection promotes M2 polarization of macrophages and improves survival rate in septic mice. Evid Based Complement Alternat Med 2015;2015:352642.

    PubMed  PubMed Central  Google Scholar 

  53. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71–78.

    Article  CAS  PubMed  Google Scholar 

  54. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 2011;167:e211-e219.

    Article  Google Scholar 

  55. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006;66:605–612.

    Article  CAS  PubMed  Google Scholar 

  56. Mantovani A, Romero P, Palucka AK, Marincola FM. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 2008;371:771–783.

    Article  CAS  PubMed  Google Scholar 

  57. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122:787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X. Research progress on the phenotype reversion of tumorassociated macrophage. Chin J Cancer Biother (Chin) 2014;21:216–217.

    CAS  Google Scholar 

  59. Iwanowycz S, Wang J, Jia X, Fan DP. Emodin inhibits breast cancer growth by modulating the phenotype of tumor-associated macrophages (TUM6P. 1004). J Immunol 2015;194:141–148.

    Google Scholar 

  60. Jia X, Yu F, Wang J, Iwanowycz S, Saaoud F, Wang Y, et al. Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat 2014;148:291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao H, Zhang X, Chen X, Li Y, Ke ZQ, Tang T, et al. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitisassociated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol 2014;3:311–321.

    Article  CAS  Google Scholar 

  62. Zhang H, Ren Y, Tang X, Wang K, Liu Y, Zhang L, et al. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis. Sci Rep 2015;5:8888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen HYT, Vo BHT, Nguyen LTH, Bernad J, Alaeddine M, Coste A, et al. Extracts of Crinum latifolium inhibit the cell viability of mouse lymph oma cell line EL4 and Induce activation of anti-tumour activity of macrophages in vitro. J Ethnopharmacol 2013;149:75–83.

    Article  CAS  PubMed  Google Scholar 

  64. Jiang Z, Chen Z, Li X, Zhao J, Li SM, Hu JP, et al. Immunomodulatory effects of Sarcandra glabra polysaccharides on macrophage RAW 264.7. Chin J Exp Tradit Med Form (Chin) 2014;20:178–182.

    CAS  Google Scholar 

  65. Jia C, Li F, He L, Li J. Effect of Fuzheng Jiedu Formula on tumor associated macrophage and related cytokine in the mouse gastric cancer postoperative recurrence model. Chin J Basic Med Tradit Chin Med (Chin) 2014;20:748–751.

    Google Scholar 

  66. Zhu R, Wu Y, Luo J, Yi L, Dong Y. Effect of berberine on mice RAW264.7 macrophages polarization. J Guangzhou Univ Tradit Chin Med (Chin) 2014;31:974–978.

    Google Scholar 

  67. Gao S, Zhou J, Liu N, Wang LJ, Gao QY, Wu Y, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 2015;85:131–139.

    Article  CAS  PubMed  Google Scholar 

  68. Hyam SR, Lee IA, Gu W, Kim KA, Jeong JJ, Jang SE, et al. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol 2013;708:21–29.

    Article  CAS  PubMed  Google Scholar 

  69. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukocyte Biol 2009;86:1065–1073.

    Article  CAS  PubMed  Google Scholar 

  70. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549–555.

    Article  CAS  PubMed  Google Scholar 

  71. Bingle L, Lewis CE, Corke KP, Reed MWR, Brown NJ. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Brit J Cancer 2006;94:101–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161–174.

    Article  CAS  PubMed  Google Scholar 

  73. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med. 2010; 362: 875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ito M, Ishii G, Nagai K, Maeda R, Nakano Y, Ochiai A. Prognostic impact of cancer-associated stromal cells in patients with stage I lung adenocarcinoma. CHEST J 2012;142:151–158.

    Article  Google Scholar 

  75. Kurahara H, Takao S, Kuwahata T, Nagai T, Ding Q, Maeda K, et al. Clinical significance of folate receptor beta-expressing tumor-associated macrophages in pancreatic cancer. Ann Surg Oncol 2012;19:2264–2271.

    Article  PubMed  Google Scholar 

  76. Ding J, Xia Y, Liu C, Xu JY. Expression and clinical significance of M2 tumor-associated macrophage in pancreatic carcinoma. Cancer Res Prev Treat 2012;39:59–61.

    CAS  Google Scholar 

  77. Khan MA, Assiri AM, Broering DC. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J Biomed Sci 2015;22:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kimura Y, Sumiyoshi M. Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through antilymphangiogenesis. Phytomedicine 2013;20:328–336.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang X. Study of depressant effect of PAMD to Expc-3 and the influence about the expression of tumorous new vessels in tumorbearing athymic mouse [dissertation]. Harbin: Heilongjiang University of Chinese Medicine; 2009.

    Google Scholar 

  81. Varinska L, Gal P, Mojzisova G, Mirossay L, Mojzis J. Soy and breast cancer: focus on angiogenesis. Int J Molecul Sci 2015;16:11728–11749.

    Article  CAS  Google Scholar 

  82. Guo YP, Wang SH, Hoot DR, Clinton SK. Suppression of VEGFmediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem 2007;18:408–417.

    Article  CAS  PubMed  Google Scholar 

  83. Ouyang H. Study on inhibitory effects and mechanism of QYHJ Decoction on human pancreatic cancer cell line CFPAC-1 in nude mice [dissertation]. Shanghai: Fudan University; 2009.

    Google Scholar 

  84. Yin J, Shi W, Zhu X, Chen Z, Liu LM. Qingyihuaji Formula inhibits progress of liver metastases from advanced pancreatic cancer xenograft by targeting to decrease expression of Cyr61 and VEGF. Integr Cancer Ther 2012;11:37–47.

    Article  PubMed  Google Scholar 

  85. Shi W. Establishment of human pancreatic carcinoma SW1990 cell Line with highly metastatic ptential in the liver and interventional research of traditional chinese drugs [dissertation]. Shanghai: Fudan University; 2007.

    Google Scholar 

  86. Lei Y, Guo X, Liu L, Zhou F. Research of Rhodiola rosea as the assistant anti-tumor drug. Herald Med 2014;33:1344–1347.

    CAS  Google Scholar 

  87. Shi S, Wen P, Xu X. Anti-proliferation and anti-metastasis effects of emodin on human pancreatic cancer via NF-κB signaling pathway. Chin Arch Tradit Chin Med (Chin) 2014;32:897–900.

    CAS  Google Scholar 

  88. Lin Q. Bioactivity analysis of constituents from water caltrop pericarps and surveys about their anti-gastric cancer mechanism [dissertation]. Hangzhou: College of Biosystems Engineering and Food Science, Zhejiang University; 2013.

    Google Scholar 

  89. Suboj P, Babykutty S, Valiyaparambil Gopi DR, Nair RS, Srinivas P, Gopala S. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-kappaB. Eur J Pharm Sci 2012;45:581–591.

    Article  CAS  PubMed  Google Scholar 

  90. Deng J. Experimental study of the effect of antitumor and the molecular mechanism of honokiol [dissertation]. Hangzhou: Medical College of Zhejiang University; 2008.

    Google Scholar 

  91. Schutyser E, Struyf S, Proost P, Opdenakker G, Laureys G, Verhasselt B, et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem 2002;277:24584–24593.

    Article  CAS  PubMed  Google Scholar 

  92. Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. IntI Immunopharmacol 2006;6:317–333.

    Article  CAS  Google Scholar 

  93. Liu C, Leung MY, Koon JC, Zhu LF, Hui YZ, Yu B, et al. Macrophage activation by polysaccharide biological response modifier isolated from Aloe vera L. var. chinensis (Haw.) Berg. Int Immunopharmacol 2006;6:1634–1641.

    Article  CAS  PubMed  Google Scholar 

  94. Ye S, Zeng Y, Yin L. Effects of salidroside on proliferation, apoptosis, phagocytosis, ROS and NO production of murine peritoneal macrophages in vitro. Chin J Cell Mol Immunol (Chin) 2011;27:237–241.

    CAS  Google Scholar 

  95. Li J, Xue X, Liu X, Fang J, Xie W. Effect of berberine on human endometrial carcinoma cell line Ishikawa co-cultured with TAM. J Beijing Univ Tradit Chin Med (Chin) 2011;34:448–452.

    CAS  Google Scholar 

  96. Song Y, Ding N, Kanazawa T, Yamashita U, Yoshida Y. Cucurbitacin D is a new inflammasome activator in macrophages. Int Immunopharmacol 2013;17:1044–1050.

    Article  CAS  PubMed  Google Scholar 

  97. Kim MY, Cho JY. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages. J Ginseng Res 2013;37:293–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dong Q, Sugiura T, Toyohira Y, Yoshida Y, Yangihara N, Karasaki Y. Stimulation of IFN-gamma production by garlic lectin in mouse spleen cells: involvement of IL-12 via activation of p38 MAPK and ERK in macrophages. Phytomedicine 2011;18:309–316.

    Article  CAS  PubMed  Google Scholar 

  99. Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol Immunotoxicol 2002;24:469–482.

    Article  CAS  PubMed  Google Scholar 

  100. Diao H, Li X, Chen J, Luo Y, Chen X, Dong L, et al. Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages. J Biosci Bioeng 2008;105:85–89.

    Article  CAS  PubMed  Google Scholar 

  101. Zhan X, Jia L, Niu Y, Qi HX, Chen XP, Zhan QW, et al. Targeted depletion of tumour-associated macrophages by an alendronateglucomannan conjugate for cancer immunotherapy. Biomaterials 2014;35:10046–10057.

    Article  CAS  PubMed  Google Scholar 

  102. Li X, Xu W. TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus (Pers.) Fries. J Ethnopharmacol 2011;135:1–6.

    Article  CAS  PubMed  Google Scholar 

  103. Zhao Y. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. J Ethnopharmacol 2013;149:35–48.

    Article  CAS  PubMed  Google Scholar 

  104. Li F, Huang D, Jiang L. Immunoregulatory effect of polysaccharide from the seeds of Plantago asiatica L. on RAW264.7 cells stimulated with lipopolysaccharide. Food Sci 2014;35:249–252.

    Google Scholar 

  105. Zhu XL, Chen AF, Lin ZB. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J Ethnopharmacol 2007;111:219–226.

    Article  CAS  PubMed  Google Scholar 

  106. Lin Z. Antagonist effects of Ganoderma polysaccharides on tumor evasion from immune surveillance. Chin J Pharmacol Toxicol (Chin) 2015;29:14.

    Google Scholar 

  107. Banerjee S, Parasramka M, Paruthy SB, eds. Polysaccharides in cancer prevention: from bench to bedside. Polysaccharides: Bioact Biotechnol 2015:2179–2214.

    Chapter  Google Scholar 

  108. Cai Z, Li W, Wang H, Yan WQ, Zhou YL, Wang GJ, et al. Anti-tumor and immunomodulating activities of a polysaccharide from the root of Sanguisorba officinalis L. Int J Biol Macromolec 2012;51:484–488.

    Article  CAS  Google Scholar 

  109. Tang X, Yan L, Gao J, Yang XL, Xu YX, Ge HY, et al. Antitumor and immunomodulatory activity of polysaccharides from the root of Limonium sinense Kuntze. Int J Biol Macromolec 2012;51:1134–1139.

    Article  CAS  Google Scholar 

  110. Sun X, Gao R, Xiong Y, Huang QC, Xu M. Antitumor and immunomodulatory effects of a water-soluble polysaccharide from Lilii Bulbus in mice. Carbohydr Polym 2014;102:543–549.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang J, Tang Q, Zhou C, Jia W, Da Siva L, Nguyen LD, et al. GLIS, a bioactive proteoglycan fraction from Ganoderma lucidum, displays anti-tumour activity by increasing both humoral and cellular immune response. Life Sci 2010;87:628–637.

    Article  CAS  PubMed  Google Scholar 

  112. Nie X, Shi B, Ding Y, Tao W. Antitumor and immunomodulatory effects of Weikangfu Granule compound in tumor-bearing mice. Curr Ther Res Clin Exp 2006;67:138–150.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang J, Tong X, Li P, Cao H, Su WW. Immuno-enhancement effects of Shenqi Fuzheng Injection on cyclophosphamide-induced immunosuppression in Balb/c mice. J Ethnopharmacol 2012;139:788–795.

    Article  PubMed  Google Scholar 

  114. Shu G, Zhao W, Yue L, Su HW, Xiang MX. Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth. J Ethnopharmacol 2015;168:237–247.

    Article  CAS  PubMed  Google Scholar 

  115. Kawanishi T, Ikeda-Dantsuji Y, Nagayama A. Effects of two basidiomycete species on interleukin 1 and interleukin 2 production by macrophage and T cell lines. Immunobiology 2010;215:516–520.

    Article  CAS  PubMed  Google Scholar 

  116. Wang H, Chan Y, Li T, Wu C. Improving cachectic symptoms and immune strength of tumour-bearing mice in chemotherapy by a combination of Scutellaria baicalensis and Qing-Shu-Yi-Qi-Tang. Eur J Cancer 2012;48:1074–1084.

    Article  PubMed  Google Scholar 

  117. Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 2011;17:1217–1220.

    Article  CAS  PubMed  Google Scholar 

  118. Hingorani SR, Potter JD. Pancreas cancer meets the Thunder God. Sci Transl Med 2012;4:156ps21.

    Article  CAS  Google Scholar 

  119. Liu Z, Ma L, Zhou G-B. The main anticancer bullets of the Chinese medicinal herb, Thunder God vine. Molecules 2011;16:5283.

    Article  CAS  PubMed  Google Scholar 

  120. Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 2009;9:351–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao FR, Mao HP, Zhang H, Hu LM, Wang H, Wang YF, et al. Antagonistic effects of two herbs in Zuojin Wan, a traditional Chinese medicine formula, on catecholamine secretion in bovine adrenal medullary cells. Phytomedicine 2010;17:659–668.

    Article  CAS  PubMed  Google Scholar 

  122. Graziose R, Lila MA, Raskin I. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods. Curr Drug Discov Technol 2010;7:2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-kang Sun.

Additional information

Supported by the National Natural Science Foundation of China (No. 81630106); Tianjin University of Traditional Chinese Medicine Foundation; Natural Science Foundation Tibetan Autonomous Region of China; Sino Swiss Science and Technology Cooperation programme (Nos. EG 03-032015, EG 05-032015, EG 07-032016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Wl., Sun, Lk., Gao, Xm. et al. Targeting tumor-associated macrophages by anti-tumor Chinese materia medica. Chin. J. Integr. Med. 23, 723–732 (2017). https://doi.org/10.1007/s11655-017-2974-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-017-2974-y

Keywords

Navigation