Skip to main content
Log in

Effects of Fengbaisan (丰白散) on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung tissue of rats with chronic obstructive pulmonary disease

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To observe effects of Fengbaisan (丰白散, FBS) on the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in lung tissue of rats with chronic obstructive pulmonary disease (COPD) and to investigate the preventive and therapeutic mechanisms of FBS.

Methods

The COPD rat model was established by cigarette smoke exposure and lipopolysaccharide (LPS) intra-tracheal dripping. The histopathological changes of lung tissue was observed via hematoxylin/eosin staining. The expression of MMP-9 and TIMP-1 in lung tissue was measured by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry.

Results

The typical histopathological changes of COPD were displayed in the model group, Ambroxol Hydrochloride group and FBS group, and the pathological lesions in the FBS group were less than those in the model group. The expression of MMP-9 and TIMP-1 in the model group increased significantly compared with those in the normal group (P<0.05). After treatment for successive 28 days, the expression of MMP-9 and TIMP-1 in the FBS group decreased remarkably as compared with the model group (P<0.05).

Conclusions

FBS can regulate MMP-9/TIMP-1 imbalance to prevent airway and lung parenchyma remodeling process via reducing the expression of MMP-9 and TIMP-1 in the lung tissue of COPD rats, and this may be a possible therapeutic mechanism of FBS on COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopez AD, Murray CC. The global burden of disease, 1990–2020. Nat Med 1998;4:1241–1243.

    Article  CAS  PubMed  Google Scholar 

  2. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007;176:532–555.

    Article  PubMed  Google Scholar 

  3. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003;22:672–688.

    Article  CAS  PubMed  Google Scholar 

  4. Belvisi MG, Bottomley KM. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm Res 2003;52:95–100.

    Article  CAS  PubMed  Google Scholar 

  5. Su NX, Zhang SF, He MD. Observe the clinical efficacy of Fengbaisan on patients with chronic bronchitis. J Chin Phys (Chin) 2003;5:1134–1135.

    Google Scholar 

  6. Su NX, Liu SM, Ge XP, Zhang SF, He MD. The effects of Fengbaisan on the level of TNF-α, IL-2 in peripheral blood of patients with chronic bronchitis. J Tradit Chin Med Univ Hunan (Chin) 2005;25:35–37.

    Google Scholar 

  7. Pan SG, Su NX, Wang Z, Zhang SF, Wang Y. Effect of Fengbaisan Decoction on expression of γ-GCS and SOD in rats with chronic obstructive pulmonary disease. J Tradit Chin Med Univ Hunan (Chin) 2009;29:36–39.

    Google Scholar 

  8. The Ministry of Science and Technology of the People’s Republic of China. Guidance suggestions for the care and use of laboratory animals. 2006;9–30.

    Google Scholar 

  9. Song YP, Cui DJ, Mao PY, Liang YJ, Wang DW. A study on pathological changes and the potential role of growth factors in the airway wall remodeling of COPD rat models. Chin J Tubercul Respir Dis (Chin) 2001;24:283–287.

    CAS  Google Scholar 

  10. Shannon RS, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008;22:659–661.

    Google Scholar 

  11. Ren YC, Wang L, He HB, Tang X. Pulmonary selectivity and local pharmacokinetics of ambroxol hydrochloride dry powder inhalation in rat. J Pharm Sci 2009;98:1797–1803.

    Article  CAS  PubMed  Google Scholar 

  12. Li YQ, Zhang ZX, Xu YJ, Ni W, Cheng SX, Ma D, et al. Effects of cigarette smoke medium on activity of alveolar macrophages and expression of MMP-9 and TIMP-1 in COPD rats. Chin J Tubercul Respir Dis (Chin) 2005;28:648–649.

    Google Scholar 

  13. Pelkonen M. Smoking: relationship to chronic bronchitis, chronic obstructive pulmonary disease and mortality. Curr Opin Pulm Med 2008;14:105–109.

    Article  PubMed  Google Scholar 

  14. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 1985;64:111–126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLB/WHO Global Initiative for Chronic Obstructive Lung Disease (COLD) workshop summary. Am J Respir Crit Care Med 2001;163:1256–1276.

    Article  CAS  PubMed  Google Scholar 

  16. Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W. Bacterial endotoxin is an active component of cigarette smoke. Chest 1999;115:829–835.

    Article  CAS  PubMed  Google Scholar 

  17. Rylander R. Endotoxin in the environment-exposure and effects. J Endotoxin Res 2002;8:241–252.

    CAS  PubMed  Google Scholar 

  18. Larsson L, Szponar B, Pehrson C. Tobacco smoking increases dramatically air concentrations of endotoxin. Indoor Air 2004;14:421–424.

    Article  CAS  PubMed  Google Scholar 

  19. Larsson L, Szponar B, Ridha B, Pehrson C, Dutkiewicz J, Krysinska-Traczyk E, et al. Identification of bacterial and fungal components in tobacco and tobacco smoke. Tob Induc Dis 2008;4:4.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sebastian A, Pehrson C, Larsson L. Elevated concentrations of endotoxin in indoor air due to cigarette smoking. J Environ Monit 2006;8:519–522.

    Article  CAS  PubMed  Google Scholar 

  21. Rushton L. Occupational causes of chronic obstructive pulmonary disease. Rev Environ Health 2007;22:195–212.

    CAS  PubMed  Google Scholar 

  22. Sarir H, Henricks PA, van Houwelingen AH, Nijkamp FP, Folkerts G. Cells, mediators and Toll-like receptors in COPD. Eur J Pharmacol 2008;585:346–353.

    Article  CAS  PubMed  Google Scholar 

  23. George CL, Jin H, Wohlford-Lenane CL, O’Neill ME, Phipps JC, O’Shaughnessy P, et al. Endotoxin responsiveness and subchronic grain dust-induced airway disease. Am J Physiol Lung Cell Mol Physiol 2001;280:L203–L213.

    CAS  PubMed  Google Scholar 

  24. Vogelzang PF, van der Gulden JW, Folgering H, Kolk JJ, Heederik D, Preller L, et al. Endotoxin exposure as a major determinant of lung function decline in pig farmers. Am J Respir Crit Care Med 1998;157:15–18.

    Article  CAS  PubMed  Google Scholar 

  25. Wright JL, Postma DS, Kerstjens HA, Timens W, Whittaker P, Churg A. Airway remodeling in the smoke exposed guinea pig model. Inhal Toxicol 2007;19:915–923.

    Article  CAS  PubMed  Google Scholar 

  26. Churg A, Wang R, Wang XS, Onnervik PO, Thim K, Wright JL. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodeling in guinea pigs. Thorax 2007;62:706–713.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Toward TJ, Broadley KJ. Goblet cell hyperplasia, airway function, and leukocyte infiltration after chronic lipopolysaccharide exposure in conscious Guinea pigs: effects of rolipram and dexamethasone. J Pharmacol Exp Ther 2002;302:814–821.

    Article  CAS  PubMed  Google Scholar 

  28. Vernooy JH, Dentener MA, van Suylen RJ, Buurman WA, Wouters EF. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol 2002;26:152–159.

    Article  CAS  PubMed  Google Scholar 

  29. Brass DM, Savov JD, Gavett SH, Haykal-Coates N, Schwartz DA. Subchronic endotoxin inhalation causes persistent airway disease. Am J Physiol Lung Cell Mol Physiol 2003;285:L755–L761.

    CAS  PubMed  Google Scholar 

  30. Kaneko Y, Takashima K, Suzuki N, Yamana K. Effects of theophylline on chronic inflammatory lung injury induced by LPS exposure in guinea pigs. Allergol Int 2007;56:445–456.

    Article  CAS  PubMed  Google Scholar 

  31. Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2008;5:478–485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008;8:183–192.

    Article  CAS  PubMed  Google Scholar 

  33. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 2008;31:1334–1356.

    Article  CAS  PubMed  Google Scholar 

  34. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011;365:1567–1575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. van den Berge M, ten Hacken NH, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. Chest 2011;139:412–423.

    Article  PubMed  Google Scholar 

  36. Hogg JC, Chu F, Utokaparach S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645–2653.

    Article  CAS  PubMed  Google Scholar 

  37. Sturton G, Persson C, Barnes PJ. Small airways: an important but neglected target in the treatment of obstructive airway diseases. Tr Pharmacol Sci 2008;29:340–345.

    Article  CAS  Google Scholar 

  38. Parks WC, Shapiro SD. Matrix metalloproteinases in lung biology. Respir Res 2001;2:10–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Goetzl EJ, Banda MJ, Leppert D. Matrix metalloproteinases in immunity. J Immunol 1996;156:1–4.

    CAS  PubMed  Google Scholar 

  40. Kelly EA, Busse WW, Jarjour NN. Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am J Respir Crit Care Med 2000;162:1157–1161.

    Article  CAS  PubMed  Google Scholar 

  41. Kheradmand F, Rishi K, Werb Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 2002;115:839–848.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mautino G, Oliver N, Chanez P, Bousquet J, Capony F. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am J Respir Cell Mol Biol 1997;17:583–591.

    Article  CAS  PubMed  Google Scholar 

  43. Wojtowicz-Praga SM, Dickson RB, and Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs 1997;15:61–75.

    Article  CAS  PubMed  Google Scholar 

  44. Denhardt DT, Feng B, Edwards DR, Cocuzzi ET, Malyankar UM. Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther 1993;59:329–341.

    Article  CAS  PubMed  Google Scholar 

  45. Shapiro SD. Elastolytic metalloproteinases produced by human mononuclear phagocytes: potential roles in destructive lung disease. Am J Respir Crit Care Med 1994;150:S160–S164.

    Article  CAS  PubMed  Google Scholar 

  46. Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu SY, et al. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 1999;159:1985–1991.

    Article  CAS  PubMed  Google Scholar 

  47. Finlay GA, Russell KJ, McMahon KJ, D’Arcy EM, Masterson JB, FitzGerald MX, et al. Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax 1997;52:502–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Omachi TA, Eisner MD, Rames A, Markovtsova L, Blanc PD. Matrix metalloproteinase-9 predicts pulmonary status declines in a1-antitrypsin deficiency. Respir Res 2011;12:35–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Vignola AM, Riccobono L, Mirabella A, Profita M, Chanez P, Bellia V, et al. Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 1998;158:1945–1950.

    Article  CAS  PubMed  Google Scholar 

  50. Culpitt SV, Rogers DF, Traves SL, Barnes PJ, Donnelly LE. Sputum matrix metalloproteases: comparison between chronic obstructive pulmonary disease and asthma. Respir Med 2005;99:703–710.

    Article  CAS  PubMed  Google Scholar 

  51. Vernooy JH, Lindeman JH, Jacobs JA, Hanemaaijer R, Wouters EF. Increased activity of matrix metalloproteinase-8 and matrix metalloproteinase-9 in induced sputum from patients with COPD. Chest 2004;126:1802–1810.

    Article  CAS  PubMed  Google Scholar 

  52. Beeh KM, Beier J, Kornmann O, Buhl R. Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med 2003;97:634–639.

    Article  CAS  PubMed  Google Scholar 

  53. Yue YY, Li YC. Protective effect of salvia injection on the airway in rats with COPD. Clin Rational Drug Use (Chin) 2011;4:15–17.

    Google Scholar 

  54. Huang DH. Effect of danshen injection on transforming growth factor-β1 in COPD airway remodelling rats. Chin J Inform Tradit Chin Med (Chin) 2008;15:36–38.

    CAS  Google Scholar 

  55. Zhao Y. Effect of complex Salvia miltiorrhiza on the changes of pulmonary function and HMGB1 in the serum of COPD patients. J Modern Med Health (Chin) 2008;24:2891–2893.

    Google Scholar 

  56. Yuan WS, Sun JM. The effects of Slavia miltiorrhiza injection on the expression of sICAM-1 of patients with COPD. Chin J Rehabilit (Chin) 2009;24:250–252.

    Google Scholar 

  57. Zhao J, Liu ZQ, Luo AG, Ai H, Song JJ, Zhao JL, et al. Influence of Astragalus polysaccharide on hydroxyproline and MMP-9 in rats with COPD. J Beijing Univ Tradit Chin Med (Chin) 2009;32:759–762.

    CAS  Google Scholar 

  58. Yu WW, Huang XY, Zhang Y, Xia Q. Effect of Astragalus polysaccharide on the expression of MMP-9 and TIMP-1 in lung tissue of COPD rats. Chin Med Herald (Chin) 2012;9:25–27.

    CAS  Google Scholar 

  59. Liu L. Influence of astragalus injection on pulmonary function and immune function in chronic obstructive pulmonary disease. Chin Modern Doc (Chin) 2010;48:3–4.

    Google Scholar 

  60. Chen SQ, Li W. Curative effects of milkvetch root injections in acute chronic obstructive pulmonary disease and immunically functional effects of lymphocyte. Chin Modern Doc (Chin) 2008;46:40–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-xiang Su  (苏南湘).

Additional information

Supported by the Scientific Research Foundation of Traditional Chinese Medicine of Hunan Provincial Health Bureau (No. 201194); the General Science and Technology Project of Hunan Provincial Science and Technology Bureau (No. 2011SK3232)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Su, Nx., Chen, Zq. et al. Effects of Fengbaisan (丰白散) on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung tissue of rats with chronic obstructive pulmonary disease. Chin. J. Integr. Med. 20, 224–231 (2014). https://doi.org/10.1007/s11655-013-1619-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-013-1619-z

Keywords

Navigation