Skip to main content
Log in

Supercritical CO2 Cycles for Nuclear-Powered Marine Propulsion: Preliminary Conceptual Design and Off-Design Performance Assessment

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Using the efficient, space-saving, and flexible supercritical carbon dioxide (sCO2) Brayton cycle is a promising approach for improving the performance of nuclear-powered ships. The purpose of this paper is to design and compare sCO2 cycle power systems suitable for nuclear-powered ships. Considering the characteristics of nuclear-powered ships, this paper uses different indicators to comprehensively evaluate the efficiency, cost, volume, and partial load performance of several nuclear-powered sCO2 cycles. Four load-following strategies are also designed and compared. The results show that the partial cooling cycle is most suitable for nuclear-powered ships because it offers both high thermal efficiency and low volume and cost, and can maintain relatively high thermal efficiency at partial loads. Additionally, the new load-following strategy that adjusts the turbine speed can keep the compressor away from the surge line, making the cycle more flexible and efficient compared to traditional inventory and turbine bypass strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AT:

Auxiliary turbine

EP:

Electric propulsion

HTR:

High temperature recuperator

IHX:

Intermediate heat exchanger

LFR:

Lead-cooled fast reactor

LTR:

Low temperature recuperator

MCOM:

Main compressor

MP:

Mechanical propulsion

MT:

Main turbine

PC:

Partial cooling cycle

PCHE:

Printed circuit board heat exchanger

PCOM:

Pre-compressor

PWR:

Pressurized water reactor

RC:

Recompression cycle

RCOM:

Recycled compressor

sCO2 :

supercritical CO2

SFR:

Sodium-cooled fast reactor

SR:

Simple recuperative cycle

Tur:

Turbine

C :

Cost/USD

C BM :

The price of PCHE in per unit mass/USD·kg−1

CEP:

The cost of every unit of cycle output power/USD·kW−1

D :

Diameter/m

d c :

Diameter of micro-channel/mm

E input :

Exergy input to the sCO2 cycle/MW

e :

Specific exergy/kJ·kg−1

f c :

Moody friction coefficient

f m :

The fraction of metal

H :

Height of PCHE/m

h :

Specific enthalpy/kJ·kg−1

Δh :

Isentropic enthalpy change/kJ·kg−1

htc:

Heat transfer coefficient/kW·(mK)−1

HC:

Heat capacity/W·K−1

I x :

Irreversibility of the xth component/%

L :

Length of heat exchanger/m

m :

Mass flow rate/kg·s−1

m t :

Total turbine mass flow rate/kg·s−1

N :

Shaft rotational speed/r·min−1

N 1 :

The number of sub-exchangers

N2:

The number of modules

NTU:

The number of transfer units

Nu :

Nusselt number

n s :

Isentropic volume exponent

P ti :

Turbine inlet pressure/MPa

P to :

Turbine outlet pressure/MPa

ΔP :

Pressure drop of heat exchanger/kPa

p c :

Channel pitch/mm

Pe :

Peclet number

Pr :

Prandtl number

Q :

Total heat load of the heat exchanger/MW

Q th :

Thermal duty of the reactor/MW

q :

The heat load of the sub-heat exchanger/MW

R :

Gas constant/J·(kg·K)−1

Re :

Reynolds number

T min :

Cycle minimum temperature/°C

Tti:

Turbine inelt temperature/°C

ΔT IHX :

Pinch temperature difference of IHX/°C

ΔT r :

Pinch temperature difference of recuperator/°C

t :

The thickness of the plate/mm

UA:

Thermal conductance of heat exchanger/W·K−1

V hx :

Total volume of the cycle heat exchangers/m3

v :

specific volume/m3·kg−1

W :

Width of PCHE/m

Wa:

Total electricity consumption of auxiliary facility and daily demand/MW

WAT :

Power of the auxiliary turbine/MW

WC :

Power of compressor/MW

WMT :

Power of the main turbine/MW

W net :

Net power output of sCO2 cycle/MW

W p :

Propulsion power/MW

W t :

Power of turbine/MW

Z :

Gas compressibility

ε :

Effectiveness of heat exchanger

η c :

Compressor isentropic efficiency/%

η ex :

Exergy efficiency of the sCO2 cycle/%

η g :

Generator efficiency/%

η gb :

Gearbox efficiency/%

η m :

Motor efficiency/%

η t :

Turbine isentropic efficiency/%

η th :

Thermal efficiency of sCO2 cycle/%

η * :

Dimensionless efficiency

ρ m :

The density of the PCHE material/kg·m−3

λ :

The thermal conductivity of the heat exchanger material/W·(m·K)−1

φ * :

Dimensionless flow

Ψ * :

Dimensionless head

avg:

Average value

d:

Design condition

cold:

Heat exchanger cold side

eq:

Equivalent value at turbomachine map conditions

hot:

Heat exchanger hot side

od:

Off-design condition

References

  1. IMO. Fourth IMO Greenhouse Gas Study. International maritime organization, London, 2021.

    Google Scholar 

  2. Yoon H.J., Ahn Y., Lee J.I., Addad Y., Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor. Nuclear Engineering and Design, 2012, 245: 223–232.

    Article  Google Scholar 

  3. Oh B.S., Kim Y., Kim S.J., Lee J.I., SMART with Trans-Critical CO2 power conversion system for maritime propulsion in Northern Sea Route, part 1: System design. Annals of Nuclear Energy, 2020, 149(15): 107792.

    Article  Google Scholar 

  4. Du Y., Yang C., Hu C., Zhang C., Thermoeconomic analysis and inter - stage pressure ratio optimization of nuclear power supercritical CO2 multi - stage recompression. International Journal of Energy Research, 2020, 45(2): 2367–2382.

    Article  ADS  Google Scholar 

  5. Du Y., Yang C., Hu C., Zhou M., Thermodynamic design and Off-design investigation of nuclear power supercritical CO2 recompression cycle. Nuclear Engineering and Design, 2020, 369(1): 110851.

    Article  Google Scholar 

  6. Park J.H., Park H.S., Kwon J.G., et al., Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors. Energy, 2018, 160: 520–535.

    Article  Google Scholar 

  7. Floyd J., Alpy N., Moisseytsev A., et al., A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature. Nuclear Engineering and Design, 2013, 260: 78–92.

    Article  Google Scholar 

  8. Guo Z., Zhao Y., Zhu Y., et al., Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems. Progress in Nuclear Energy, 2018, 108: 111–121.

    Article  Google Scholar 

  9. Lee J., Lee J.I., Yoon H.J., et al., Supercritical carbon dioxide turbomachinery design for water-cooled small modular reactor application. Nuclear Engineering and Design, 2014, 270: 76–89.

    Article  Google Scholar 

  10. Li M., Jie Y., Zhu H., et al., The thermodynamic and cost-benefit-analysis of miniaturized lead-cooled fast reactor with supercritical CO2 power cycle in the commercial market. Progress in Nuclear Energy, 2018, 103: 135–150.

    Article  Google Scholar 

  11. Li M., Xu J., Cao F., et al. The investigation of thermo-economic performance and conceptual design for the miniaturized lead-cooled fast reactor composing supercritical CO2 power cycle. Energy, 2019, 173: 174–195.

    Article  Google Scholar 

  12. Luo D., Huang D., Thermodynamic and exergoeconomic investigation of various sCO2 Brayton cycles for next generation nuclear reactors. Energy Conversion and Management, 2020, 209(1): 112649.

    Article  Google Scholar 

  13. Dostal V., Driscoll M.J., Hejzlar P., A supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology, Boston, USA, 2004.

    Google Scholar 

  14. Moisseytsev A., Sienicki J.J., Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. Nuclear Engineering and Design, 2008, 238(8): 2094–2105.

    Article  Google Scholar 

  15. Moisseytsev A., Sienicki J.J., Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nuclear Engineering and Design, 2009, 239(7): 1362–1371.

    Article  Google Scholar 

  16. Wu P., Ma Y., Gao C., et al., A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications. Nuclear Engineering and Design, 2020, 368: 110767.

    Article  Google Scholar 

  17. Li Z., Liu X., Shao Y., Zhong W., Research and development of supercritical carbon dioxide coal-fired power systems. Journal of Thermal Science, 2020, 29(3): 546–575.

    Article  ADS  Google Scholar 

  18. Combs O.V., An investigation of the supercritical CO2 cycle (Feher cycle) for shipboard application. Massachusetts Institute of Technology, Boston, USA, 1977.

    Google Scholar 

  19. Oh B.S., Kim S.J., Kim Y., Lee J.I., SMART with trans-critical CO2 power conversion system for maritime propulsion in Northern Sea Route, part 2: Transient analysis. Annals of Nuclear Energy, 2021, 150: 107875.

    Article  Google Scholar 

  20. Pérez-Pichel G.D., Linares J.I., Herranz L.E., Moratilla B.Y., Thermal analysis of supercritical CO2 power cycles: Assessment of their suitability to the forthcoming sodium fast reactors. Nuclear Engineering and Design, 2012, 250: 23–34.

    Article  Google Scholar 

  21. Zhu H., Xie G., Yuan H., Nizetic S., Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle. Sustainable Energy Technologies and Assessments, 2022, 52: 102166.

    Article  Google Scholar 

  22. Pham H.S., Alpy N., Ferrasse J.H., et al., Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor. Energy, 2015, 87: 412–424.

    Article  Google Scholar 

  23. Moisseytsev A., Sienicki J.J., Dynamic control analysis of the AFR-100 SMR SFR with a supercritical CO2 cycle and dry air cooling: part I — plant control optimization. 26th International Conference on Nuclear Engineering, London, UK, 2018.

  24. Oh B.S., Ahn Y.H., Yu H., et al., Safety evaluation of supercritical CO2 cooled micro modular reactor. Annals of Nuclear Energy, 2017, 110: 1202–1216.

    Article  Google Scholar 

  25. Baek J.Y., Lee J.J., Lee J.I., Transient analyses of the S-CO2 Cycle coupled to PWR for nuclear marine propulsion. Transactions of the Korean Nuclear Society Virtual Spring Meeting, Republic of Korea, 2020.

  26. Carstens N., Control strategies for supercritical carbon dioxide power conversion systems. Massachusetts Institute of Technology, Boston, USA, 2007.

    Google Scholar 

  27. Lock A., Bone V., Off-design operation of the dry-cooled supercritical CO2 power cycle. Energy Conversion and Management, 2022, 251: 114903.

    Article  Google Scholar 

  28. Thanganadar D., Fornarelli F., Camporeale S., et al., Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application. Applied Energy, 2021, 282: 116200.

    Article  Google Scholar 

  29. Wan X., Wang K., Zhang C.M., et al., Off-design optimization for solar power plant coupling with a recompression supercritical CO2 Brayton cycle and a turbine-driven main compressor. Applied Thermal Engineering, 2022, 209: 118281.

    Article  Google Scholar 

  30. Yang J., Yang Z., Duan Y., Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system. Energy, 2020, 201: 117676.

    Article  Google Scholar 

  31. Yang J., Yang Z., Duan Y., Part-load performance analysis and comparison of supercritical CO2 Brayton cycles. Energy Conversion and Management, 2020, 214: 112832.

    Article  Google Scholar 

  32. Yu J.C., Marine nuclear power technology. Shanghai Jiaotong University Press, Shanghai, 2016.

    Google Scholar 

  33. Aoto K., Uto N., Sakamoto Y., et al., Design study and R&D progress on Japan sodium-cooled fast reactor. Journal of Nuclear Science and Technology, 2011, 48(4): 463–471.

    Article  ADS  Google Scholar 

  34. White M.T., Bianchi G., Chai L., et al., Review of supercritical CO2 technologies and systems for power generation. Applied Thermal Engineering, 2021, 185: 116447.

    Article  Google Scholar 

  35. Ragheb M., Nuclear Naval Propulsion. IntechOpen, London, 2011.

    Book  Google Scholar 

  36. Nuclear-Powered Ships. https://world-nuclear.org/information-library/non-power-nuclear-applications/transport/nuclear-powered-ships.aspx, 2021 (accessed on March 13, 2023).

  37. Grandy C., Kim T.K., Jin E., et al., Advanced fast reactor - 100 - design overview. International Atomic Energy Agency (IAEA), New York, 2015.

    Google Scholar 

  38. Molland A.F., Marine engines and auxiliary machinery. The Maritime Engineering Reference Book, Oxford, Butterworth-Heinemann, 2008, pp. 344–482.

    Google Scholar 

  39. Xu J., Sun E., Li M., et al, Key issues and solution strategies for supercritical carbon dioxide coal fired power plant. Energy, 2018, 157: 227–246.

    Article  Google Scholar 

  40. Demirel Y., Energy: production, conversion, storage, conservation, and coupling. Springer Science & Business Media, 2012.

  41. Roshanfekr P., Lundmark S., Thiringer T., et al., A synchronous reluctance generator for a wind application-compared with an interior mounted permanent magnet synchronous generator. 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 2014, pp. 1–5. DOI: https://doi.org/10.1049/cp.2014.0411.

  42. Pabiszczak S., Kowal M., Efficiency of the eccentric rolling transmission. Mechanism and Machine Theory, 2022, 169: 104655.

    Article  Google Scholar 

  43. Mikityuk K., Heat transfer to liquid metal: Review of data and correlations for tube bundles. Nuclear Engineering and Design, 2009, 239(4): 680–687.

    Article  Google Scholar 

  44. Wang Y., Xie G., Zhu H., et al., Assessment on energy and exergy of combined supercritical CO2 Brayton cycles with sizing printed-circuit-heat-exchangers. Energy, 2023, 263: 125559.

    Article  Google Scholar 

  45. Wright S.A., Radel R.F., Vernon M.E., et al., Operation and analysis of a supercritical CO2 Brayton cycle, Sandia report, USA, 2010. DOI:https://doi.org/10.2172/984129

  46. Pham H.S., Alpy N., Ferrasse J.H., et al., An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations. International Journal of Heat and Fluid Flow, 2016, 61: 379–394.

    Article  Google Scholar 

  47. Dyreby J.J., Modeling the supercritical carbon dioxide Brayton cycle with recompression. The University of Wisconsin-Madison, Madison, USA, 2014.

    Google Scholar 

  48. Fuller R., Preuss J., Noall J., Turbomachinery for supercritical CO2 power cycles. American Society of Mechanical Engineers, 2012, 44717: 961–966. DOI: https://doi.org/10.1115/GT2012-68735

    Google Scholar 

  49. Arenas Pinilla E.M., Cantizano González A., Asenjo Pedraza I., et al., Design and analysis of radial and axial turbomachinery of supercritical CO2 power cycles. http://hdl.handle.net/11531/36538, 2019.

  50. Liu J., Yan S., Zeng D., A new measurement model for main steam flow of power plants. Procedia Environmental Sciences, 2011, 11: 18–24.

    Article  Google Scholar 

  51. Li S., Wang Z., Gas turbine performance analysis. Harbin Institute of Technology Press, Harbin, 2017.

    Google Scholar 

  52. Carlson M.D., Middleton B.M., Ho C.K., Techno-economic comparison of solar-driven sCO2 Brayton cycles using component cost models baselined with vendor data and estimates. ASME 2017 11th International Conference on Energy Sustainability. DOI: https://doi.org/10.1115/ES2017-3590

  53. Sarkar J., Second law analysis of supercritical CO2 recompression Brayton cycle. Energy, 2009, 34(9): 1172–1178.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52276150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjuan Shao.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shi, M., Shao, Y. et al. Supercritical CO2 Cycles for Nuclear-Powered Marine Propulsion: Preliminary Conceptual Design and Off-Design Performance Assessment. J. Therm. Sci. 33, 328–347 (2024). https://doi.org/10.1007/s11630-023-1896-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1896-6

Keywords

Navigation