Skip to main content

Advertisement

Log in

Dual Phase Renewable Fuel Combustion in an Atmospheric Gas Turbine Burner

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Expanding the fuel flexibility of continuous combustion systems to include multiphase fuel combustion offers additional support to combat the problem of energy security and, potentially, environmental pollution. In this study, apart from establishing stability limits and measuring post-combustion emissions, flames generated from simultaneous combustion of biodiesel and syngas were examined using C2* and CH* chemiluminescence imaging to capture changes in the reaction zone. The proportion of syngas in the fuel mix was varied from 0 to 30% content (by energy contribution) while maintaining a total power output of 15 kW. The overall equivalence ratio was held at 0.7 in cases other than for determining the flammability range. The results indicate a reduction of stability limits as gas proportion in fuel blend increases. Also, chemiluminescence imaging of the two targeted species suggest a general reduction in reaction rate as well as reaction zone area and length with increase in gas ratio in the dual phase tests. Furthermore, emissions performance in the context of NOx and CO was investigated as liquid-to-gas ratios were altered. Conclusively, the study demonstrates the feasibility, limitations and potential benefits of multiphase renewable fuel combustion in a swirl-stabilised burner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sidey J., Mastorakos E., Visualisation of turbulent swirling dual-fuel flames. Proceedings of the Combustion Institute, 2017, 36(2): 1721–1727.

    Article  Google Scholar 

  2. Sidey J.A.M., Mastorakos E., Stabilisation of swirling dual-fuel flames. Experimental Thermal and Fluid Science, 2018, 95: 65–72.

    Article  Google Scholar 

  3. Evans M.J., Sidey J.A.M., Ye J., Medwell P.R., Dally B.B., Mastorakos E., Temperature and reaction zone imaging in turbulent swirling dual-fuel flames. Proceedings of the Combustion Institute, 2019, 37(2): 2159–2166.

    Article  Google Scholar 

  4. Chong C.T., Chiong M.-C., Ng J.-H., Tran M.-V., Valera-Medina A., Józsa V., Tian B., Dual-fuel operation of biodiesel and natural gas in a model gas turbine combustor. Energy & Fuels, 2020, 34(3): 3788–3796.

    Article  Google Scholar 

  5. Chiong M.-C., Valera-Medina A., Chong W.W.F., Chong C.T., Mong G.R., Mohd Jaafar M.N., Effects of swirler vane angle on palm biodiesel/natural gas combustion in swirl-stabilised gas turbine combustor. Fuel, 2020, 277: 118213.

    Article  Google Scholar 

  6. Agwu O., Valera-Medina A., Diesel/syngas co-combustion in a swirl-stabilised gas turbine combustor. International Journal of Thermofluids, 2020, 3–4: 100026.

    Article  Google Scholar 

  7. Agwu O., Runyon J., Goktepe B., Chong C.T., Ng J.-H., Giles A., Valera-Medina A., Visualisation and performance evaluation of biodiesel/methane co-combustion in a swirl-stabilised gas turbine combustor. Fuel, 2020, 277: 118172.

    Article  Google Scholar 

  8. Okafor E.C., Yamashita H., Hayakawa A., Somarathne K.D.K.A., Kudo T., Tsujimura T., Uchida M., Ito S., Kobayashi H., Flame stability and emissions characteristics of liquid ammonia spray co-fired with methane in a single stage swirl combustor. Fuel, 2021, 287: 119433.

    Article  Google Scholar 

  9. Agwu O.E., Multiphase fuel combustion in a swirl diffusion burner: an operational and performance study. PhD Thesis, Cardiff University, UK, 2020.

    Google Scholar 

  10. Kutne P., Kapadia B.K., Meier W., Aigner M., Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor. Proceedings of the Combustion Institute, 2011, 33(2): 3383–3390.

    Article  Google Scholar 

  11. Rehman A., Phalke D.R., Pandey R., Alternative fuel for gas turbine: Esterified jatropha oil-diesel blend. Renewable Energy, 2011, 36(10): 2635–2640.

    Article  Google Scholar 

  12. Seljak T., Rodman Oprešnik S., Kunaver M., Katrašnik T., Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines. Applied Energy, 2012, 99: 40–49.

    Article  Google Scholar 

  13. Lee M.C., Seo S.B., Yoon J., Kim M., Yoon Y., Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel, 2012, 102: 431–438.

    Article  Google Scholar 

  14. Chiaramonti D., Rizzo A.M., Spadi A., Prussi M., Riccio G., Martelli F., Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil. Applied Energy, 2013, 101: 349–356.

    Article  Google Scholar 

  15. Chiariello F., Allouis C., Reale F., Massoli P., Gaseous and particulate emissions of a micro gas turbine fuelled by straight vegetable oil-kerosene blends. Experimental Thermal and Fluid Science, 2014, 56: 16–22.

    Article  Google Scholar 

  16. Mendez C.J., Parthasarathy R.N., Gollahalli S.R., Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine. Applied Energy, 2014, 118: 135–140.

    Article  Google Scholar 

  17. Kurji H., Valera-Medina A., Runyon J., Giles A., Pugh D., Marsh R., Cerone N., Zimbardi F., Valerio V., Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines. Renewable Energy, 2016, 99: 443–451.

    Article  Google Scholar 

  18. Kurji H., Valera-Medina A., Okon A., Chong C.T., Combustion and emission performance of CO2/CH4/biodiesel and CO2/CH4/diesel blends in a swirl burner generator. Energy Procedia, 2017, 142: 154–159.

    Article  Google Scholar 

  19. Buffi M., Valera-Medina A., Marsh R., Pugh D., Giles A., Runyon J., Chiaramonti D., Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends. Applied Energy, 2017, 201: 84–93.

    Article  Google Scholar 

  20. Valera-Medina A., Marsh R., Runyon J., Pugh D., Beasley P., Hughes T., Bowen P., Ammonia-methane combustion in tangential swirl burners for gas turbine power generation. Applied Energy, 2017, 185: 1362–1371.

    Article  Google Scholar 

  21. Chen L., Zhang Z., Lu Y., Zhang C., Zhang X., Zhang C., Roskilly A.P., Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends. Applied Energy, 2017, 195: 693–701.

    Article  Google Scholar 

  22. Bhele S.K., Deshpande N.V., Thombre S.B., Experimental investigation of combustion characteristics of jatropha biodiesel (JME) and its diesel blends for gas turbine combustor. Materials Today: Proceedings, 2018, 5(11): 23404–23412.

    Google Scholar 

  23. Buffi M., Cappelletti A., Rizzo A.M., Martelli F., Chiaramonti D., Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass and Bioenergy, 2018, 115: 174–185.

    Article  Google Scholar 

  24. Valera-Medina A., Gutesa M., Xiao H., Pugh D., Giles A., Goktepe B., Marsh R., Bowen P., Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation. International Journal of Hydrogen Energy, 2019, 44(16): 8615–8626.

    Article  Google Scholar 

  25. Seljak T., Katrašnik T., Emission reduction through highly oxygenated viscous biofuels: Use of glycerol in a micro gas turbine. Energy, 2019, 169: 1000–1011.

    Article  Google Scholar 

  26. Okafor E.C., Somarathne K.D.K.A., Ratthanan R., Hayakawa A., Kudo T., Kurata O., Iki N., Tsujimura T., Furutani H., Kobayashi H., Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combustion and Flame, 2020, 211: 406–416.

    Article  Google Scholar 

  27. Agwu O., Valera-Medina A., Katrašnik T., Seljak T., Flame characteristics of glycerol/methanol blends in a swirl-stabilised gas turbine burner. Fuel, 2021, 290: 119968.

    Article  Google Scholar 

  28. Chong C.T., Hochgreb S., Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions. Applied Energy, 2017, 185: 1383–1392.

    Article  Google Scholar 

  29. Kumar N., Varun, Chauhan S.R., Performance and emission characteristics of biodiesel from different origins: A review. Renewable and Sustainable Energy Reviews, 2013, 21: 633–658.

    Article  Google Scholar 

  30. Wang Y., Wu J., Lin Y., Effects of confinement length of the central toroidal recirculation zone partly confined by the small pilot stage chamber on ignition characteristics. Aerospace Science and Technology, 2020, 107: 106277.

    Article  Google Scholar 

  31. Dimitriou P., Tsujimura T., Suzuki Y., Hydrogen-diesel dual-fuel engine optimization for CHP systems. Energy, 2018, 160: 740–752.

    Article  Google Scholar 

  32. Kathrotia T., Riedel U., Seipel A., Moshammer K., Brockhinke A., Experimental and numerical study of chemiluminescent species in low-pressure flames. Applied Physics B, 2012, 107(3): 571–584.

    Article  Google Scholar 

  33. García-Armingol T., Hardalupas Y., Taylor A.M.K.P., Ballester J., Effect of local flame properties on chemiluminescence-based stoichiometry measurement. Experimental Thermal and Fluid Science, 2014, 53: 93–103.

    Article  Google Scholar 

  34. Ballester J., García-Armingol T., Diagnostic techniques for the monitoring and control of practical flames. Progress in Energy and Combustion Science, 2010, 36: 375–411.

    Article  Google Scholar 

  35. Lefebvre A.H., Ballal D.R., Gas turbine combustion: Alternative fuels and emissions. 3rd ed. CRC Press Taylor & Francis Group, 2010.

  36. Alsulami R., Windell B., Nates S., Wang W., Won S.H., Windom B., Investigating the role of atomization on flame stability of liquid fuels in an annular spray burner. Fuel, 2020, 265: 116945.

    Article  Google Scholar 

  37. Ballester J., Hernández R., Sanz A., Smolarz A., Barroso J., Pina A., Chemiluminescence monitoring in premixed flames of natural gas and its blends with hydrogen. Proceedings of the Combustion Institute, 2009, 32(2): 2983–2991.

    Article  Google Scholar 

  38. Han D.-S., Kim G.-B., Kim H.-S., Jeon C.-H., Experimental study of NOx correlation for fuel staged combustion using lab-scale gas turbine combustor at high pressure. Experimental Thermal and Fluid Science, 2014, 58: 62–69.

    Article  Google Scholar 

Download references

Acknowledgements

Malcolm Seaborne, Paul Malpas and the rest of Cardiff University’s Mechanical Engineering Laboratory and Workshop Technicians are gratefully acknowledged. Many thanks to Franck Lacan of the Additive Manufacturing unit of Cardiff University for printing the swirler used. Also, Ogbonnaya Agwu would like to express appreciation to the Petroleum Technology Development Fund (PTDF) Nigeria for funding his Doctorate at Cardiff University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ogbonnaya Agwu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agwu, O., Runyon, J., Goktepe, B. et al. Dual Phase Renewable Fuel Combustion in an Atmospheric Gas Turbine Burner. J. Therm. Sci. 32, 1278–1291 (2023). https://doi.org/10.1007/s11630-023-1719-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1719-9

Keywords

Navigation