Skip to main content

Advertisement

Log in

Phase Equilibrium Characteristics of CO2 and Ionic Liquids with [FAP] Anion Used for Absorption-Compression Refrigeration Working Pairs

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The study of the phase equilibrium characteristics of CO2-ionic liquids (ILs) as new absorption-compression type refrigeration working pairs is of great importance. Three kinds of ILs, i.e., [emim][FAP], [bmim][FAP] and [hmim][FAP], were chosen as potential absorbents. The solubility of CO2 in these ILs was measured experimentally within 0 to 5.0 MPa at temperatures of 293.15 K to 333.15 K, and the effects of temperature, pressure, IL anion and cation structure and stirring action on CO2 solubility were also discussed and analyzed. The results showed that the longer alkyl chains in an identical IL family, the alkyl fluoride group in IL anions and the stirring action by a magnetic stirrer had positive effects on the solubility of CO2. In the three ILs, [hmim][FAP] possessed the best performance for CO2 absorption; the solubility of CO2 reached 0.7641 at a pressure of 5 MPa and temperature of 293.15 K, the maximum solubility measured in this work. The CO2-[hmim][FAP] binary mixture is recommended as a potentially applicable working pair for CO2 absorption-compression refrigeration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

M :

molecular weight

m :

mass/kg

n :

amount of substance/mol

P :

pressure/MPa

R :

universal gas constant/J·mol−1·K−1

T :

temperature/K

V :

volume/mL

x :

mole fraction

Z :

compression factor

Á :

density/g·cm−3

EC:

Equilibrium cell

GR:

Gasholder

E:

Equilibrium

APSD:

Average percentage of solubility difference

B:

Buffer tank

IL:

Ionic liquid

PSD:

Percentage of solubility difference

References

  1. Wu X.M., Hu S., Mo S.J., Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems. Journal of Cleaner Production, 2013, 54: 115–124.

    Article  Google Scholar 

  2. Li K., Wu W.D., Wu J.W., Liang H.X., Zhang H., Experiments on vapour-liquid equilibrium of CO2-ionic liquid under flow conditions and influence on its refrigeration cycle. Applied Thermal Engineering, 2020, 180, 115865.

    Article  Google Scholar 

  3. Wu W.D., Jia S.S., Wu J., Zhang H., Research progress on refrigeration systems using CO2 mixture refrigerant to reduce its cycle pressure. Chemical Industry and Engineering Progress, 2017, 36: 1969–1976. (in Chinese)

    Google Scholar 

  4. Groll E.A., Radermacher R., Vapor compression cycle with solution circuit and desorber/absorber heat exchange. ASHRAE Transactions, 1994, 100: 73–83.

    Google Scholar 

  5. Niu Y.M., Chen J.P., Chen Z.J., Chen H., Construction and testing of a wet-compression absorption carbon dioxide refrigeration system for vehicle air conditioner. Applied Thermal Engineering, 2007, 27: 31–36.

    Article  Google Scholar 

  6. Groll E.A., Modeling of absorption/compression cycles using working pair carbon dioxide/acetone. ASHRAE Transactions, 1997, 103: 863–871.

    Google Scholar 

  7. Mozurkewich G., Greenfield M.L., Schneider W.F., Zietlow D.C., Meyer J.J., Simulated performance and cofluid dependence of a CO2-cofluid refrigeration cycle with wet compression. International Journal of Refrigeration, 2002, 25: 1123–1136.

    Article  Google Scholar 

  8. Kim S.A., Yim J.H., Lim J.S., High-pressure phase behavior of binary mixtures containing methylpyrrolidinium derivative ionic liquids and carbon dioxide. Fluid Phase Equilibrium, 2012, 332: 28–34.

    Article  Google Scholar 

  9. Barghi S.H., Tsotsis T.T., Sahimi M., Solubility and diffusivity of H2 and CO2 in the ionic liquid [bmim][PF6]. International Journal of Hydrogen Energy, 2015, 40: 8713–8720.

    Article  Google Scholar 

  10. Tagiuri A., Sumon K.Z., Henni A., Zanganeh K., Shafeen A., Effect of cation on the solubility of carbon dioxide in three bis (fluorosulfonyl) imide low viscosity ([FSI]) ionic liquids. Fluid Phase Equilibria, 2014, 375: 324–331.

    Article  Google Scholar 

  11. Zheng D.X., Dong L., Huang W.J., Wu X.H., Nie N., A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renewable and Sustainable Energy Reviews, 2014, 37: 47–68.

    Article  Google Scholar 

  12. Blanchard L.A., Hancu D., Beckman E.J., Brennecke J.F., Green processing using ionic liquids and CO2. Nature, 1999, 399(6731): 28–29.

    Article  ADS  Google Scholar 

  13. Kim Y.J., Kim S., Joshi Y.K., Fedorov A.G., Kohl P.A., Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid. Energy, 2012, 44(1): 1005–1016.

    Article  Google Scholar 

  14. Sen M., Paolucci S., Using carbon dioxide and ionic liquids for absorption refrigeration. 7th IIR Gustav Lorentzen Conference on Natural working Fluids, Trondheim, Norway, 2006.

  15. Martin A., Bermejo M.D., Thermodynamic analysis of absorption refrigeration cycles using ionic liquid + CO2 pairs. Journal of Supercritical Fluids, 2010, 55(2): 852–859.

    Article  Google Scholar 

  16. Holbrey J.D., Seddon K.R., The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. Journal of the Chemical Society, 1999, 13: 2133–2139.

    Google Scholar 

  17. Anthony J.L., Anderson J.L., Maginn E.J., Brennecke J.F., Anion Effects on Gas Solubility in Ionic Liquids. Journal of Physical Chemistry B, 2005, 109(13): 6366–6374.

    Article  Google Scholar 

  18. Wujek S.S., Mccready M.J., Mozurkewich G., Experimental and modeling improvements to a Co-Fluid cycle utilizing ionic liquids and carbon dioxide. 15th International Refrigeration and Air Conditioning Conference at Purdue, 2014: 14–17.

  19. Mozurkewich G., Simoni L.D., Stadtherr M.A., Schneider W.F., Performance implications of chemical absorption for the carbon-dioxide-cofluid refrigeration cycle. International Journal of Refrigeration, 2014, 46: 196–206.

    Article  Google Scholar 

  20. Wu W.D., Wu J., Wang Z., Zhang H., Selection of ionic liquids and absorption properties of ionic liquids-CO2 working pairs. Journal of Refrigeration, 2016, 37: 22–28. (in Chinese)

    Google Scholar 

  21. Anthony J.L., Crosthwaite J.M., Hert D.G., Phase equilibria of gases and liquids with 1-n-butyl-3-methylimi-dazolium tetrafluoroborate. ACS Symposium Series, 2003, 856: 110–120.

    Article  Google Scholar 

  22. Blanchard L.A., Gu Z., Brennecke J.F., High-pressure phase behavior of ionic liquid/CO2 systems. Journal of Physical Chemistry B, 2001, 105: 2437–2444.

    Article  Google Scholar 

  23. Maiti A., Theoretical screening of ionic liquid solvents for carbon capture. Chemistry and Sustainable Chemistry, 2009, 7: 628–631.

    Article  Google Scholar 

  24. Althuluth M., Mota-Martinez M., Kroon M.C., Peters C.J., Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methyl-imidazolium tris(pentafluoroethyl) trifluorophosphate. Journal of Chemical and Engineering Data, 2012, 57: 3422–3425.

    Article  Google Scholar 

  25. Lim B.H., Choe W.H., Shim J.J., Ra C.S., Tuma D., Lee H., Lee C.S., High-pressure solubility of carbon dioxide in imidazolium-based ionic liquids with anions [PF6] and [BF4]. Korean Journal of Chemical Engineering, 2009, 26: 1130–1136.

    Article  Google Scholar 

  26. Cadena C., Anthony J.L., Shah J.K., Why is CO2 so soluble in imidazolium-based ionic liquids. Journal of the American Chemical Society, 2004, 126: 5300–5308.

    Article  Google Scholar 

  27. Amir H.J., Mohammad S., Gerd M., Masih H.J., Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate. Journal of Chemical Thermodynamics. 2013, 67: 55–62.

    Article  Google Scholar 

  28. Bazargani Z., Sabzi F., Thermodynamic modeling of CO2 absorption in 1-butyl-3- methylimidazolium-based ionic liquids. Journal of Molecular Liquids, 2016, 223: 235–242.

    Article  Google Scholar 

  29. Ahosseini A., Ren W., Weatherley L.R., Scurto, A.M., Viscosity and self-diffusivity of ionic liquids with compressed hydroflurocarbons: 1-Hexyl-3-methyl-imidazolium bis (trifluoromethylsulfony) amide and 1,1,1,2-tetrafluoroethane. Fluid Phase Equilibria, 2017, 437: 34–42.

    Article  Google Scholar 

  30. Peng L., Wu W.D., Wu J., Wang L., Prediction of phase equilibrium characteristics of CO2-ionic liquid working pairs based on K-K equation. Journal of Chemical Engineering of Chinese Universities, 2019, 2(33): 274–282.

    Google Scholar 

  31. Manuel N.D.P., Zakrzewska M.E., Volumetric and phase behaviour of mixtures of fluoroalkylphosphate-based ionic liquids with high pressure carbon dioxide. Journal of Supercritical Fluids, 2016, 113: 61–65.

    Article  Google Scholar 

  32. Afzal W., Liu X.Y., Prausnitz J.M., Solubilities of some gases in four immidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2013, 63: 88–94.

    Article  Google Scholar 

  33. Kenneth R., Seddon ionic liquids for clean technology. Journal of Chemical Technology and Biotechnology, 1997, 68, 351–356.

    Article  ADS  Google Scholar 

  34. Kirkup L., Frenkel R., An introduction to uncertainty in measurement using the GUM (Guide to the expression of uncertainty in measurement), 1st ed. Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  35. Han, X.H., Yang, Z.Z., Gao, Z.J., Guan, W.J.; Chen, G.M., Isothermal vapor liquid equilibrium of HFC-161 + DMETrEG within the temperature range of 293. 15–353.15

  36. K and comparison for HFC-161 combined with different absorbents. Journal of Chemical and Engineering Data, 2016, 61: 1321–1327.

  37. Moffat R.J., Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1988, 1: 3–17.

    Article  ADS  Google Scholar 

  38. Li K., Wu W.D., Hu K., Wang L., Hua R.Q., Performance analysis of a novel household water purification system based on humidification-dehumidification principle. Desalination, 2019, 469, 114099.

    Article  Google Scholar 

  39. Fang Y.B., Guan W.J., Bao K.L., Wang Y.Z., Han X.H., Chen G.M., Isothermal Vapor-Liquid Equilibria of the Absorption Working Pairs (R1234yf + NMP, R1234yf + DMETrEG) at Temperatures from 293.15 K to 353.15 K. Journal of Chemical and Engineering Data, 2018, 63(5), 1212–1219.

    Article  Google Scholar 

  40. Aki S.N.V.K., Mellein B.R., Saurer E.M., Brennecke J.F., High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. Journal of Physical Chemistry B, 2004, 108: 20355–20365.

    Article  Google Scholar 

  41. Tomida D.S., Kenmochi K., Qiao Q., Bao Q., Viscosity of ionic liquid mixtures of 1-alkyl-3-methylimidazolium hexafluorophosphate + CO2. Fluid Phase Equilibria, 2011, 307: 185–189.

    Article  Google Scholar 

  42. Wu W.D., Wu J., Hou Y., Su L., Zhang H., Predicting CO2 solubility in imidazole ionic liquids for use in absorption refrigeration systems by using the group contribution equation of state method. International Journal of Thermophysic, 2017, 38: 1–14.

    Article  Google Scholar 

  43. Ahosseini A., Ortega E., Sensenich B., Scurto A.M., Viscosity of n-alkyl-3-methyl-midazolium bis (trifluoromethylsulf-onyl) amide ionic liquids saturated with compressed CO2. Fluid Phase Equilibria, 2009, 286: 72–78.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No.51676129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Wu or Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wang, L., Li, X. et al. Phase Equilibrium Characteristics of CO2 and Ionic Liquids with [FAP] Anion Used for Absorption-Compression Refrigeration Working Pairs. J. Therm. Sci. 30, 165–176 (2021). https://doi.org/10.1007/s11630-020-1407-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1407-y

Keywords

Navigation