Skip to main content
Log in

Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo Z.Y., Li D.Y., Wang B.X... A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer. 1998, 41(14): 2221–2225.

    Article  MATH  Google Scholar 

  2. Liu W., Liu Z.C., Ma L. Application of a multi-field synergy principle in the performance evaluation of convective heat transfer enhancement in a tube. Science Bulletin. 2012, 57(13): 1600–1607.

    Article  ADS  Google Scholar 

  3. Wei L., Liu Z.C., Guo Z.Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement. Science Bulletin. 2009, 54(19): 3579–3586.

    Article  Google Scholar 

  4. Guo Z.Y, Tao W.Q., Shah R. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer. 2005. 48(9): 1797–1807.

    Article  MATH  Google Scholar 

  5. Liu X., Meng J., Guo Z. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chinese Science Bulletin. 2009, 54(6): 943–947.

    Google Scholar 

  6. Szwaba R., Kaczynski P., Telega J., Doerffer P. Influenceof internal channel geometry of gas turbine blade on flow structure and heat transfer. Journal of Thermal Science. 2017, 26(6): 514–522.

    Article  ADS  Google Scholar 

  7. An Z., Jia L., Ding Y., Dang C., Li X. A review on lithi-um-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science. 2017, 26(5): 391 12.

    Article  ADS  Google Scholar 

  8. Qin J., Ning D., Feng Y, Zhang J., Feng S., Bao W. A new method of thermal protection by opposing jet for a hypersonic aeroheating strut. Journal of Thermal Science. 2017, 26(3): 282–288.

    Article  ADS  Google Scholar 

  9. Guo C., Nian X., Liu Y, Qi C., Song J., Yu W. Analysis of 2D flow and heat transfer modeling in fracture of porous media. Journal of Thermal Science. 2017, 26(4): 331–338.

    Article  ADS  Google Scholar 

  10. Huang Z.F., Nakayama A., Yang K., Yang C., Liu W. En-hancing heat transfer in the core flow by using porous medium insert in a tube. International Journal of Heat and Mass Transfer. 2010, 53(5-6): 1164–1174.

    Article  MATH  Google Scholar 

  11. Yu B.M., Liu W. Fractal analysis of permeabilities for porous media. AIChE Journal. 2004, 50(1): 46–57.

    Article  MathSciNet  Google Scholar 

  12. Quan X., Cheng P., Wu H. An experimental investigation on pressure drop of steam condensing in silicon microchannels. International Journal of Heat & Mass Transfer. 2008, 51(21): 5454–5458.

    Article  MATH  Google Scholar 

  13. Huang X., Yang W., Ming T., Shen W., Yu X. Heat trans-fer enhancement on a microchannel heat sink with impinging jets and dimples. International Journal of Heat and Mass Transfer. 2017, 112: 113–124.

    Article  Google Scholar 

  14. Wang G., Cheng P., Bergles A.E. Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. International Journal of Heat & Mass Transfer. 2008, 51(9-10): 2267–2281.

    Article  Google Scholar 

  15. Cooper D., Jackson D., Launder B., Liao G. Impinging jet studies for turbulence model assessment—I. Flow-field experiments. International Journal of Heat & Mass Transfer. 1993, 36(10): 2675–2684.

    Article  Google Scholar 

  16. Lee Y.J., Lee P.S., Chou S.K. Enhanced microchannel heat sinks using oblique fins. Conference Enhanced microchannel heat sinks using oblique fins. p. 253–260.

  17. Chang S.W., Chiang K.F., Chou T.C. Heat transfer and pressure drop in hexagonal ducts with surface dimples. Experimental Thermal & Fluid Science. 2010, 34(8): 1172–1181.

    Article  Google Scholar 

  18. Ming T.Z., Ding Y., Gui J.L., Tao Y.X. Transient thermal behavior of a microchannel heat sink with multiple impinging jets. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2015, 16(11): 894–909.

    Article  Google Scholar 

  19. Ming T.Z., Gui J.L., Peng C., Tao Y. Analysis of the hydraulic and thermal performances of a microchannel heat sink with extended-nozzle impinging jets. Heat Transfer Research. 2017, 48(10): 893–914.

    Article  Google Scholar 

  20. Seyf H.R., Zhou Z., Ma H.B., Zhang Y. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. International Journal of Heat & Mass Transfer. 2013, 56(1-2): 561–573.

    Article  Google Scholar 

  21. Zhuang Y., Ma C.F., Qin M. Experimental study on local heat transfer with liquid impingement flow in twodimensional micro-channels. International Journal of Heat & Mass Transfer. 1997, 40(97): 40554059.

    Google Scholar 

  22. Ming T., Cai C., Yang W., Shen W., Gan T. Optimization of dimples in microchannel heat sink with impinging jets—Part A: mathematical model and the influence of dimple radius. Journal of Thermal Science. 2018, 27(3): 195–202.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingzhen Ming.

Additional information

This study is financially supported by the National Natural Science Foundation of China (Grant No. 51778511), the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFA029), and the Key Project of ESI Discipline Development of Wuhan University of Technology (WUT Grant No. 2017001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, T., Cai, C., Yang, W. et al. Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement. J. Therm. Sci. 27, 321–330 (2018). https://doi.org/10.1007/s11630-018-1019-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-018-1019-y

Keywords

Navigation