Skip to main content
Log in

Altitudinal trends in δ13C value, stomatal density and nitrogen content of Pinus tabuliformis needles on the southern slope of the middle Qinling Mountains, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

In this study, a coniferous tree species (Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains (QLM) to detect the trends in carbon isotope ratio (δ13C), leaf nitrogen content (LNC) and stomatal density (SD) with altitude variation in north-subtropical humid mountain climate zone of China. The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m, whereas leaf δ13C exhibited a significantly negative correlation with the altitude. Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment, suggesting that the pattern of increasing δ13C with the altitude cannot be generalized. The negative correlation between δ13C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude. Furthermore, there was a remarkable negative correlation between leaf δ13C and LNC. One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ13C. The significant negative correlation between leaf δ13C and SD over altitudes was also found in the present study, indicating that increases in SD with altitude would reduce, rather than enhance plant δ13C values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrés V, Tuanmu MN, Xu WH, et al. (2012) Relationship between floristic similarity and vegetated land surface phenology: Implications for the synoptic monitoring of species diversity at broad geographic regions. Remote Sensing of Environment 121: 488–496. DOI:10.1016/j.rse.2012.02.013

    Article  Google Scholar 

  • Beerling DJ (1999) Stomatal density and index: Theory and application. Burlington House, London, UK. pp 251–254.

    Google Scholar 

  • Beerling DJ, Kelly CK (1996) Evolutionary comparative analysis of the relationship between leaf structure and function. New Phytologist 134: 35–51. DOI: 10.1111/j.1469-8137.1996.tb01144.x

    Article  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the late Palaeozoic era. Nature 410: 352–354. DOI: 10.1038/35066546

    Article  Google Scholar 

  • Beerling DJ, Chaloner WG (2011) The impact of atmospheric CO2 and temperature change on stomatal density: Observations from Quercus roburlammas leaves. Annals Botany 71: 231–235. DOI: 10.1006/anbo.1993.1029

    Article  Google Scholar 

  • Bramley-Alves J, Wanek W, French K, et al. (2015) Moss d13C: an accurate proxy for past water environments in polar regions. Global Change Biology 21: 2454–2464. DOI: 10.1111/gcb.12848

    Article  Google Scholar 

  • Carrer M, Nola P, Eduard JL, et al. (2007) Regional variability of climate-growth relationships in Pinus cembra high elevation forests in the Alps. Journal of Ecology 95: 1072–1083. DOI: 10.1111/j.1365-2745.2007.01281.x

    Article  Google Scholar 

  • Chen LQ, Cheng SL, Chaloner WG, et al. (2001) Assessing the potential for the stomatal characters of extent and fossil Ginkgo leaves to signal atmosphere CO2 change. American Journal of Botany 88: 1309–1315. DOI: 10.2307/3558342

    Article  Google Scholar 

  • Chen JW, Yang ZQ, Zhou P, et al. (2013) Biomass accumulation and partitioning, photosynthesis, and photosynthetic induction in field-grown maize (Zea mays L.) under low and high nitrogen conditions. ActaPhysiologiaePlantarum 35: 95–105. DOI: 10.1007/s11738-012-1051-6

    Google Scholar 

  • Chinese Soil Society (1999) Chemical Analysis of Soil. Chinese Agricultural Science Press, Beijing, China. pp 32–40. (In Chinese)

    Google Scholar 

  • Cordell S, Goldstein G, Meinzer FC, et al. (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Functional Ecology 13: 811-818. DOI: 10.1046/j. 1365-2435.1999.00381.x

  • Dang HS, Zhang YJ, Zhang KR, et al. (2010) Age structure and regeneration of subalpine fir (Abies fargesii) forests across an altitudinal range in the Qinling Mountains, China. Forest Ecology and Management 259: 547–554. DOI: 10.1016/j.foreco.2009.11.011

    Article  Google Scholar 

  • Diefendorf AF, Mueller KE, Wing SL, et al. (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. PNAS 107(13): 5738–5743. DOI: 10.1073/pnas.0910513107

    Article  Google Scholar 

  • Dong LM, Liu SM, Xin JH (1995) Variations of the climatic elements with elevation at Huoditang forest farm in Qinling Mountain range. Bulletin of soil and water conservation 15: 16–19. (In Chinese)

    Google Scholar 

  • Feng Y, Wen ZB, Gulnur S, et al. (2014) Study of the relationship between compositions of shrub plant of stablecarbon-isotope and environmental factors in Xinjiang representatives of Chenopodiaceae. Contemporary Problems of Ecology 7: 301–307. DOI: 10.1134/S1995425514030056

    Article  Google Scholar 

  • Guan LL, Wen DZ (2011) More nitrogen partition in structural proteins and decreased photosynthetic nitrogen-use efficiency of Pinus massoniana under in situ polluted stress. Journal of Plant Research 124(6): 663–673. DOI: 10.1007/s10265-011-0405-2

    Article  Google Scholar 

  • Helliker B, Richter S (2008) Subtropical to boreal convergence of tree-leaf temperatures. Nature 454: 511–514. DOI: 10.1038/nature07031

    Article  Google Scholar 

  • Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment 22: 1435–1443. DOI: 10.1046/j.1365-3040.1999.00502.x

    Article  Google Scholar 

  • Hikosaka K, Nagamatsu D, Ishii HS, et al. (2002) Photosynthesis-nitrogen relationships in species at different altitudes on Mount Kinabalu, Malaysia. Ecological Research 17: 305–313. DOI: 10.1046/j.1440-1703.2002.00490.x

    Article  Google Scholar 

  • Hultine KR, Marshall JD (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32–40. DOI: 10.1007/s004420050986

    Article  Google Scholar 

  • Kogami H, Hanba YT, Kibe T, et al. (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant, cell and environment 24: 529–538. DOI: 10.1046/j.1365-3040.2001.00696.x

    Article  Google Scholar 

  • Kouwenberg CLR, Kürschner WM, Kürschner WM (2007) Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Reviews in Mineralogy & Geochemistry 66: 215–241. DOI: 10.2138/rmg.2007.66.9

    Article  Google Scholar 

  • Lars K, Thomas G, Christop H (2006) Altitudinal change in soil and foliar nutrient concentrations and in microclimate across the tree line on the subtropical island mountain Mt. Teide (Canary Islands). Flora 3: 202–214. DOI: 10.1016/j.flora.2005.07.003

    Google Scholar 

  • Li C, Zhang X, Liu X, et al. (2006) Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica 40: 5–13. DOI: 10.14214/sf.348

    Article  Google Scholar 

  • Li YB, Chen T, Zhang YF, et al. (2007) The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of Sabina przewalskii Kom. and Sabina chinensis (Lin.) Ant. Environmental Geology 51: 1279–1284. DOI: 10.1007/s00254-006-0421-z

    Article  Google Scholar 

  • Li Y, Zhao HX, Duan BL, et al. (2011) Adaptability to elevated temperature and nitrogen addition is greater in a highelevation population than in a low-elevation population of Hippophae rhamnoides. Trees 25: 1073–1082. DOI: 10.1007/s00468-011-0582-6

    Article  Google Scholar 

  • Li J, Wang G, Liu X, et al. (2009) Variations in carbon isotope ratios of C3plants and distribution of C4 plants along an altitudinal transect on the eastern slope of Mount Gongga. Science in China D: Earth Sciences 52: 1714–1723. DOI: 10.1007/s11430-009-0170-4

    Article  Google Scholar 

  • Liu XZ, Su Q, Li CK, et al. (2014) Responses of carbon isotope ratios of C3 herbs to humidity index in northern China. Turkish Journal of Earth Sciences 23: 100–111. DOI: 10.3906/yer-1305-2

    Article  Google Scholar 

  • Liu XH, Zhao LJ, Menassie G, et al. (2007) Foliar δ13C and d15N values of C3 plants in the Ethiopia Rift Valley and their environmental controls. Chinese Science Bulletin 9: 1265–1273. DOI: 10.1007/s11434-007-0165-5

    Article  Google Scholar 

  • Liu Y, Linderholm HW, Song HM, et al. (2008) Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas 38: 285–291. DOI: 10.1111/j.1502-3885.2008.00065.x

    Article  Google Scholar 

  • Lockheart MJ, Poole I, Van Bergen PF, et al. (1998) Leaf carbon isotope composition and stomatal characters: important consideration for palaeoclimate reconstructions. Organic Geochemistry 29: 1003–1008. DOI: 10.1016/S0146-6380(98) 00168-5

    Article  Google Scholar 

  • Lu YD, Sun JZ, Li TL, et al. (2005) Application of carbon isotope in Chinese loess to semi-quantitative estimation of palaeotemperature. Marine Geolog y & Quaternary Geology 3: 139–143. (In Chinese).

    Google Scholar 

  • Luo JX, Zang RG, Li CY. (2006) Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China. Forest Ecology and Management 221: 285–290. DOI: 10.1016/j.foreco.2005.10.004

    Article  Google Scholar 

  • McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinussylvestris from northern Finland and the potential for extraction a climate signal from long Fennoscandian chronologies. Holocene 11: 517–526. DOI: 10.1191/09596 8301680223477

    Article  Google Scholar 

  • Morecroft MD, Woodward FI (1996) Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpine. New Phytologist 134: 471–479. DOI: 10.1111/j.1469-8137.1996.tb04364.x

    Article  Google Scholar 

  • Nogues S, Allen DJ, Morison JI, et al. (1999) Characterization of stomatal closure caused by ultraviolet-B radiation. Plant Physiology 121: 489–496. DOI: 10.1104/pp.121.2.489

    Article  Google Scholar 

  • Oindrila D, Wang Y, Joseph DH, et al. (2013) Reconstruction of paleostorms and paleoenvironment using geochemical proxies archived in the sediments of two coastal lakes in northwest Florida. Quaternary Science Reviews 68: 142–153. DOI: 10.1016/j.quascirev.2013.02.014

    Article  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116: 26–37. DOI: 10.1007/s004420050560

    Article  Google Scholar 

  • Prasolova NV, Xu ZH, Farquhar GD, et al. (2000) Variation in branchlet δ13C in relation to branchlet nitrogen concentration and growth in 8-year-old hoop pine families (Araucaria cunninghamii) in subtropical Australia. Tree Physiology 20: 1049–1055. DOI: 10.1093/treephys/20.15.1049

    Article  Google Scholar 

  • Qiang WY, Wang XL, Chen T, et al. (2003) Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountains. Trees 17: 258–262. DOI: 10.1007/s00468-002-0235-x

    Google Scholar 

  • Ran F, Zhang X, Zhang Y, et al. (2013) Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. Et Wils. seedlings as revealed by reciprocal transplantations. Trees 27: 1405–1416. DOI: 10.1007/s00468-013-0888-7

    Google Scholar 

  • Reich PB, Kloeppel BD, Ellsworth DS (1995) Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia 104: 24–30.DOI: 10.1007/BF00365558

    Article  Google Scholar 

  • Ridolfi M, Garrec JP (2000) Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Annals of Forest Science 57: 209–218. DOI: 10.1051/forest:2000112

    Article  Google Scholar 

  • Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review Palaeobotany and Palynology 114: 1–28. DOI: 10.1016/S0034-6667(00)00074-9

    Article  Google Scholar 

  • Saurer M, Cherubini P, Reynolds-Henne CE, et al. (2008) An investigation of the common signal in tree-ring stable isotope chronologies at temperate sites. Journal of Geophysical Research Atmospheres 113 (G4): 681–687. DOI: 10.1029/2008JG000689

    Article  Google Scholar 

  • Schulze ED, Schulze REW, Trimborn P, et al. (1996) Diversity, metabolic types and carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106: 352–369. DOI: 10.1007/BF00334563

    Article  Google Scholar 

  • Shi W, Wang G, Han W (2012) Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China. PLoS ONE 7(9): e44628. DOI:10.1371/journal.pone.0044628

    Article  Google Scholar 

  • Shi ZM, Liu SR, Liu XL, et al. (2006). Altitudinal variation in photosynthetic capacity, diffusional conductance andd13Cof butterfly bush (Buddleja davidii) plants growing at high elevations. Physiologia Plantarum 128: 722–731. DOI: 10.1111/j.1399-3054.2006.00805.x

    Article  Google Scholar 

  • Smith WK, Hughes NM (2009) Progress in coupling plant formand photosynthetic function. Castanea 74: 1–26. DOI: 10.2179/08-009R5.1

    Article  Google Scholar 

  • Song X, Barbour MM, Saurer M, et al. (2011). Examining the large-scale convergence of photosynthesis-weighted tree-leaf temperatures through stable oxygen isotope analysis of multiple datasets. New Phytologist 192: 912–924. DOI: 10.1111/j.1469-8137.2011.03851.x

    Article  Google Scholar 

  • Sparks JP, Ehleringer JR (1997) Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects. Oceologia 109: 362–367. DOI: 10.1007/s004420050094

    Article  Google Scholar 

  • Sun BN, Wu JY, Liu YS, et al. (2011) Reconstructing neogene vegetation and climates to infer tectonic uplift in western Yunnan China. Paleogeography, Paleoclimatology, Paleoecology 304: 328–336. DOI: 10.1016/j.palaeo.2010.09.023

    Article  Google Scholar 

  • Tausz M, Peters J, Jimenez MS (1998) Element contents and stress-physiological characterization of Pinus canariensis needles in Mediterranean type field stands in Tenerife. Chemosphere 36: 1019–1023. DOI: 10.1016/S0045-6535(97)10165-5

    Article  Google Scholar 

  • Van de Water PK, Leavitt SW, Betancourt JL (2002) Leaf δ13C variability with elevation, slope aspect and precipitation in the southwest United States. Oecologia 132: 332–343. DOI: 10.1007/s00442-002-0973-x

    Article  Google Scholar 

  • Valery JT, Zewdu E, Albert C, et al. (2008) Reconstructing palaeoenvironment from δ13C and d15N values of soil organic matter: A calibration from arid and wetter elevation transects in Ethiopia. Geoderma 147: 197–210. DOI: 35400018444324.0130

    Article  Google Scholar 

  • van Hoof TB, Kürschner WM, Wagner F, et al. (2006) Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase. Plant Ecology 183: 237–243. DOI: 10.1007/s11258-005-9021-3

    Article  Google Scholar 

  • Wang GA, Zhou LP, Liu M, et al. (2010) Altitudinal trends of leaf δ13C follow different patterns across a mountainous terrain in north China characterized by a temperate semihumid climate. Rapid Communications in Mass Spectrometry 24: 1557–1564. DOI: 10.1002/rcm.4543

    Article  Google Scholar 

  • Wang GA, Li JZ, Liu XZ, et al. (2013) Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quaternary Science Reviews 63: 83–90. DOI: 10.1016/j.quascirev.2012.12.004

    Article  Google Scholar 

  • Wang XF, Li RY, Li XZ, et al. (2014) Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern. Science China (Earth Sciences) 57: 662–670. DOI: 10.1007/s11430-013-4766-3

    Article  Google Scholar 

  • Wittich B, Horna V, Homeier J, et al. (2012) Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical literature analysis. Ecosystems 15: 958–973. DOI: 10.1007/s10021-012-9556-9

    Article  Google Scholar 

  • Wu H, Wang DX, Huang QP, et al. (2012). Influence of environmental factors on species diversity of Pine-oak mixed forest in the middle part of south Qingling Mountains. Journal of Sci-Tech University of Northwest Agriculture and Forestry (Natural science edition) 9: 41–50. DOI: 10.13207/j.cnki.jnwafu.2012.09.002

    Google Scholar 

  • Xie SP, Sun BN, Yan DF, et al. (2006) Leaf cuticular characters of Ginkgo and implications for paleo-atmospheric CO2 in the Jurassic. Progress in Natural Science 16: 258–263. DOI: 10.1080/10020070612330091

    Article  Google Scholar 

  • Xie SP, Sun BN, Yan DF, et al. (2009) Altitudinal variation in Ginkgo leaf characters: clues to paleoelevation reconstruction. Science China (Earth Sciences) 52: 2040–2046. DOI: 10.1007/s11430-009-0157-1

    Article  Google Scholar 

  • Xu ZZ, Zhou GS, Wang YH (2007) Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant Soil 301: 87–97. DOI: 10.1007/s11104-007-9424-0

    Article  Google Scholar 

  • Yan C, Han S, Zhou Y, et al. (2013) Needle δ13C and mobile carbohydrates in Pinus koraiensis in relation to decreased temperature and increased moisture along an elevational gradient in NE China. Trees 27: 389–399. DOI: 10.1007/s00468-012-0784-6

    Article  Google Scholar 

  • Zhang HW, Ma JY, Sun W, et al. (2014) Variations in stable carbon isotope composition and leaf traits of Piceas chrenkiana var. tianschanica along an altitude gradient in Tianshan Mountains, northwest China. The Scientific World Journal 2014: 1–10. DOI: 10.1155/2014/243159

    Google Scholar 

  • Zhang P, Wang G, Zhang T, et al. (2010) Responses of foliar δ13C in Sabinaprzewalskii and Piceacrassifolia to altitude and its mechanism in the Qilian Mountains, China. Chinese Journal of Plant Ecology 34: 125–133. (In Chinese). DOI: 10.3773/j.issn.1005-264x.2010.02.003

    Google Scholar 

  • Zhao C, Chen L, Ma F, et al. (2008) Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Piceacrassifolia). Tree Physiology 28: 133–141. DOI: 10.1093/treephys/28.1.133

    Article  Google Scholar 

  • Zhao LJ, Xiao HL, Liu XH (2006) Variations of foliar carbon isotope discrimination and nutrient concentrations in Artemisia ordosica and Caraganakorshinskii at the southeastern margin of China’s Tengger Desert. Environmental Geology 50: 285–294. DOI: 10.1007/s00254-006-0209-1

    Article  Google Scholar 

  • Zhou YC, Fan JW, Harris W, et al. (2013) Relationships between C3 plant foliar carbon isotope composition and element contents of grassland species at high altitudes on the Qinghai-Tibet Plateau, China. PLoS ONE 8: e60794. DOI: 10.1371/journal.pone.0060794

    Article  Google Scholar 

  • Zhou YC, Fan JW, Zhang WY, et al. (2011) Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China. Alp Botany 121: 79–90. DOI: 10.1007/s00035-011-0093-5

    Article  Google Scholar 

  • Zhu Y, Siegwolf RTW, Durka W, et al. (2010) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162: 853–863. DOI: 10.1007/s00442-009-1515-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-zhao Liu.

Additional information

http://orcid.org/0000-0001-7869-5154

http://orcid.org/0000-0002-7910-6224

http://orcid.org/0000-0002-8701-2922

http://orcid.org/0000-0002-2296-5546

http://orcid.org/0000-0003-0059-0234

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xz., Gao, Cc., Su, Q. et al. Altitudinal trends in δ13C value, stomatal density and nitrogen content of Pinus tabuliformis needles on the southern slope of the middle Qinling Mountains, China. J. Mt. Sci. 13, 1066–1077 (2016). https://doi.org/10.1007/s11629-015-3532-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3532-8

Keywords

Navigation