Skip to main content

Advertisement

Log in

Environmentally friendly approaches to genetic engineering

In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Several environmental problems related to plant genetic engineering may prohibit advancement of this technology and prevent realization of its full potential. One such common concern is the demonstrated escape of foreign genes through pollen dispersal from transgenic crop plants to their weedy relatives, creating super weeds or causing gene pollution among other crops or toxicity of transgenic pollen to nontarget insects. The high rates of gene flow from crops to wild relatives (as high as 38% in sunflower and 50% in strawberries) are certainly a serious concern. Maternal inheritance of the herbicide resistance gene via chloroplast genetic engineering has been shown to be a practical solution to these problems. Another common concern is the suboptimal production of Bacillus thuringiensis (Bt) insecticidal protein or reliance on a single (or similar) B.t. protein in commercial transgenic crops, resulting in B.t. resistance among target pests. Clearly, different insecticidal proteins should be produced in lethal quantities to decrease the development of resistance. Such hyperexpression of a novel B.t. protein in chloroplasts has resulted in 100% mortality of insects that are up to 40 000-fold resistant to other B.t. proteins. Yet another concern is the presence of antibiotic resistance genes in transgenic plants that could inactivate oral doses of the antibiotic or be transferred to pathogenic microbes in the GI tract or in soil, rendering them resistant to treatment with such antibiotics. Cotransformation and elimination of antibiotic resistant genes from transgenic plants using transposable elements via breeding are promising new approaches. Genetic engineering efforts have also addressed yet another concern, i.e., the accumulation and persistence of plastics in our environment by production of biodegradable plastics. Recent approaches and accomplishments in addressing these environmental concerns via chloroplast genetic engineering are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Brixey, P. J.; Guda, C.; Daniell, H. The chloroplast psbA promoter is more efficient in E.coli than the T7 promoter for hyper expression of a foreign protein. Biotechnol. Lett. 19:395–399; 1997.

    Article  CAS  Google Scholar 

  2. Carlson, P. S. The use of protoplasts for genetic research. Proc. Natl. Acad. Sci. USA 70:598–602; 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Cioppa, G. D.; Baner, S. C.; Tayler, M. L.; Roshester, D. E.; Klein, B. K.; Shah, D. M.; Fraley, R. T.; Kishore, G. M. Targeting a herbicide resistant enzyme from E. coli to chloroplasts of higher plants. Bio/Technology 5:579–584; 1987.

    Article  Google Scholar 

  4. Daniell, H. Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Methods Enzymol. 217:536–556; 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Daniell, H. Producing polymers in plants and bacteria. Inform 6:1365–1370; 1995.

    Google Scholar 

  6. Daniell, H. Transformation and foreign gene expression in plants mediated by microprojectile bombardment. Methods Mol. Biol. 62:453–488; 1997.

    Google Scholar 

  7. Daniell, H. The next generation of genetically engineered crops for herbicide and insect resistance, containment of gene pollution and resistant insects. AgBiotech Net, CAB International. ABN 024; 1999.

  8. Daniell, H.; Datta, R.; Varma, S.; Gray, S.; Lee, S. B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16:345–348; 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Daniell, H.; Guda, C. Biopolymer production in microorganisms and plants. Chem. Ind. 14:555–560; 1997.

    Google Scholar 

  10. Daniell, H.; Guda, C.; McPherson, D. T.; Xu, J.; Zhang, X.; Urry, D. W. Hyper expression of an environmentally friendly synthetic polymer gene. Methods Mol. Biol. 63:359–371; 1997.

    PubMed  CAS  Google Scholar 

  11. Daniell, H.; Krishnan, M.; McFadden, B. A. Expression of β-glucuronidase gene in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Rep. 9:615–619; 1991.

    Article  CAS  Google Scholar 

  12. Daniell, H.; Krishnan, M.; Umabai, U.; Gnanam, A. An efficient and prolonged in vitro translational system from cucumber etioplasts. Biochem. Biophys. Res. Commun. 135:48–255; 1986.

    Article  Google Scholar 

  13. Daniell, H.; McFadden, B. A. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc. Natl. Acad. Sci. USA 84:6349–6353; 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Daniell, H.; PoroboDessai, A.; Prakash, C. S.; Moar, W. J. In: Cherry, J. H., ed. Biochemical and cellular mechanisms of stress tolerance in plants. Berlin NATO ASI Ser. Vol. H. Berlin: Springer-Verlag; 1994:589–604.

    Google Scholar 

  15. Daniell, H.; McFadden, B. A. Genetic engineering of plant chloroplasts. United States Patent 5,693,507, 1997.

  16. Daniell, H. Universal chloroplast integration and expression vectors, transformed plants and products thereof, World Intellectual Property Organization WO 99/10513, 1999.

  17. Daniell, H.; Vivekananda, J.; Nielsen, B. L.; Ye, G. N.; Tewari, K. K.; Sanford, J. C. Transient foreign gene expression in chloroplast of cultured tobacco cells following biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA 87:88–92; 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Frey, J. Genetic flexibility of plant chloroplasts. Nature (Lond) 398:115–116; 1999.

    Article  CAS  Google Scholar 

  19. Glick, B. R.; Pasternak, J. J. Molecular biotechnology. ASM Press, Washington D. C.: ASM Press; 1998:427–477.

    Google Scholar 

  20. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43:701–726; 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Gould, F.; Anderson, A.; Reynolds, A.; Bumgardner L.; Moar, W. Selection and genetic analysis of a Heliothis virescens strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88:1545–1559; 1995.

    CAS  Google Scholar 

  22. Gould, F.; Martinez-Ramirez, A.; Ferre, J.; Silva, F. J.; Moar, W. Broad spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89:7986–7990; 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Guda, C.; Lee, S. B.; Daniell, H. Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep. 18:(12); 1999.

  24. Guda, C.; Zhang, X.; McPherson, D. T.; Xu, J.; Cherry, J.; Urry, D. W.; Daniell, H. Hyperexpression of an environmentally friendly synthetic gene. Biotech. Lett. 17:745–750; 1995.

    Article  CAS  Google Scholar 

  25. Herzog, R. W.; Singh, N. K.; Urry, D. W.; Daniell, H. Synthesis of a protein based polymer (elastomer) gene in Aspergillus nidulans. Appl. Microbiol. Biotechnol. 47:368–372; 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Hibberd, J. M.; Linley, P. J.; Khan, M. S.; Gray, J. C. Transient expression of GFP in various plastid types following microprojectile bombardment. Plant J. 16:627–632; 1998.

    Article  CAS  Google Scholar 

  27. Keeler, K. H.; Turner, C. E.; Bolick, M. R. In: Duke, S. O., ed. Movement of crop transgenes into wild plants. Herbicide resistant crops: agricultural, economic, environmental, regulatory and technological aspects. Boca Raton, FL. CRC Press; 1996:303–330.

    Google Scholar 

  28. King, J. Could transgenic supercrops one day breed superweeds? Science (Wash DC) 274:180–181; 1996.

    Article  Google Scholar 

  29. Kota, M.; Daniell, H.; Varma, S.; Garczynski, F.; Gould, F.; Moar, W. J. Overexpression of the Bacillus thuringiensis Cry2A protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 96:1840–1845; 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Koziel, M. G.; Beland, G. L.; Bowman, C.; Carozzi, N. B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.; Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M. R.; Merlin, E.; Rhodes, R.; Warren, G. W.; Wright, M.; Evola, S. V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  31. Llewellyn, D.; Fitt, G. Pollen dispersal from two field trials of transgenic cotton in the Namoi valley, Australia. Mol. Breed. 2:157–166; 1996.

    Article  Google Scholar 

  32. Losey, J. E.; Rayor, L. S.; Carter, M. C. Transgenic pollen harms monarch larvae. Nature (Lond) 399:214; 1999.

    Article  CAS  Google Scholar 

  33. May, G. D.; Mason, H. S.; Lyons, P. C. Application of transgenic plants as production systems for pharmaceuticals. In: Fuller, G. et al., ed. Am. Chem. Soc. Symposium Series 647; 1996:194–204.

    CAS  Google Scholar 

  34. McBride, K. E.; Svab, Z.; Schaaf, D. J.; Hogen, P. S.; Stalker, D. M.; Maliga, P. Amplification of a chimeric Bacillus gene in chloroplasts leads to extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13:362–365; 1995.

    Article  PubMed  CAS  Google Scholar 

  35. McBride, K. E.; Schaaf, D. J.; Daley, M.; Stalker, D. M. Controlled expression of plastid transgenes in plants based on a nuclear encoded and plastid targeted T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 91:7301–7305; 1994.

    Article  PubMed  CAS  Google Scholar 

  36. McPherson, D. T.; Xu, J.; Urry, D. W. Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expr. Purif. 7:51–57; 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Mikkelsen, T. R.; Anderson, B.; Jörgensen, R. B. The risk of crop transgene spread. Nature (Lond) 380:31; 1996.

    Article  CAS  Google Scholar 

  38. Nawrath, C.; Poirier, Y.; Sommervile, C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc. Natl. Acad. Sci. USA 91:12760–12764; 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Perlak, F. J.; Deaton, R. W.; Armstrong, T. A.; Fuchs, R. L.; Sims, S. R.; Greenplate, J. T.; Fischhoff, D. A. Insect resistant cotton plants. Bio/Technology 8:939–943; 1990.

    Article  PubMed  CAS  Google Scholar 

  40. Scott, S. E.; Wilkinson, M. J. Risks of transgene escape from transplantomic oilseed rape. Nat. Biotechnol. 17:390–392; 1999.

    Article  PubMed  CAS  Google Scholar 

  41. Shah, D. M.; Horch, R. B.; Klee, H. J.; Kishore, G. M.; Winter, J. A.; Tumer, N. E.; Hironaka, C. M.; Sanders, P. R.; Gasser, C. S.; Aykent, S.; Siegel, N. R.; Rogers, S. G.; Fraley, R. T. Engineering herbicides tolerance in transgenic plants. Science (Wash DC) 233:478–481; 1986.

    Article  CAS  Google Scholar 

  42. Svab, Z.; Maliga, P. High frequency plastid transformation in tobacco by selection for a chimeric aaaA gene. Proc. Natl. Acad. Sci. USA 90:913–917; 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Tabashnik, B. E.; Cushing, N. L.; Finson, N.; Johnson, M. W. Field development of resistance to Bacillus thuringiensis in diamondback moth. J. Econ. Entomol. 83:1671–1676; 1990.

    Google Scholar 

  44. Tabashnik, B. E.; Liu, Y. B.; Finson, N.; Masson, L.; Heckel, D. G. One gene in diamondback moth confers resistance to four Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94:1640–1644; 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Umbeck, P. F.; Barton, K. A.; Nordheim, E. V.; McCarty, J. C.; Parrot, W. L.; Jenkins, J. N. Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J. Econ. Entomol. 84:1943–1950; 1991.

    Google Scholar 

  46. Urry, D. W. Elastic biomolecular machines. Sci. Am. 272:64–69; 1995.

    Article  CAS  Google Scholar 

  47. Urry, D. W.; McPherson, D. T.; Xu, J.; Daniell, H.; Guda, C.; Gowda, D. C.; Jing, N.; Parker, T. M. Protein based polymeric materials: synthesis and properties. In: Salamone, J. C., ed. The polymeric materials encyclopedia: synthesis, properties and applications. Boca Raton, FL: CRC Press; 1996:2645–2699.

    Google Scholar 

  48. Urry, D. W.; Nicol, A.; Gowda, D. C.; Hoban, L. D.; McKee, A.; Williams, T.; Olsen, D. B.; Cox, B. A. Medical applications of bioelastic materials. In: Gebelein, C. G., ed. Biotechnological polymers: medical, pharmaceutical and industrial applications. Atlanta, GA: Technomic Publishing Co., Inc. 1993:82–103.

    Google Scholar 

  49. Ye, G. N.; Daniell, H.; Sanford, J. C. Optimization of delivery of foreign DNA into higher plant chloroplasts. Plant Mol. Biol. 15:809–819; 1990.

    Article  PubMed  CAS  Google Scholar 

  50. Yeh, H.; Ornstein-Goldstein, N.; Indik, Z.; Sheppard, P.; Anderson, N.; Rosenbloom, J.; Cicilia, G.; Yoon, K.; Rosenbloom, J. Sequence variation of bovine elastin mRNA due to alternative splicing. Collagen Relat. Res. 7:235–247; 1987.

    CAS  Google Scholar 

  51. Zhang, X.; Guda, C.; Datta, R.; Dute, R.; Urry, D. W.; Daniell, H. Nuclear expression of an environmentally friendly synthetic protein-based polymer gene in tobacco cells. Biotechnol. Lett. 17:1279–1284; 1995.

    CAS  Google Scholar 

  52. Zhang, X.; Urry, D. W.; Daniell, H. Expression of an environmentally friendly synthetic protein-based polymer gene in transgenic tobacco plants. Plant Cell Rep. 16:174–179; 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniell, H. Environmentally friendly approaches to genetic engineering. In Vitro Cell.Dev.Biol.-Plant 35, 361–368 (1999). https://doi.org/10.1007/s11627-999-0049-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-999-0049-2

Key words

Navigation