Skip to main content
Log in

The economics of current and future biofuels

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today’s technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

References

  • Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, R. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL report NREL/TP-510-32438, http://www.nrel.gov/docs/fy02osti/32438.pdf; 2002.

  • Aspen Plus™ Release 2006.5. Aspen Technology, Cambridge, MA2006.

    Google Scholar 

  • Atsumi S.; Cann A. F.; Connor M. R.; Shen C. R.; Smith K. M.; Brynilden M. P.; Chou K. J. Y.; Hanai T.; Liao J. C. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Eng 10: 305–311; 2008.

    Article  CAS  Google Scholar 

  • Atsumi S.; Hanai T.; Liao J. C. Non-fermentative pathway for synthesis of brached-chain higher alcohols as biofuels. Nature 451: 86–89; 2007. doi:10.1038/nature06450.

    Article  Google Scholar 

  • Blaschek H. P.; Ezeji T. C.; Qureshi N. Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J. Biotechnol. 115: 179–187; 2005. doi:10.1016/j.jbiotec.2004.08.010.

    Article  PubMed  Google Scholar 

  • Bothast R. J.; Schlicher M. A. Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67: 19–25; 2005. doi:10.1007/s00253-004-1819-8.

    Article  PubMed  CAS  Google Scholar 

  • BNDES. Sugarcane-based bioethanol: energy for sustainable development/coordination BNDES and CGEE. www.sugarcanebioethanol.org; 2008

  • BP Biofuels News. Advanced biofuels, working together, two global leaders are creating the next generation of biofuels. http://www.bp.com/sectiongenericarticle.do?categoryId=9021783&contentId=7041026; 2006.

  • Cleantech News. UK firm plans biobutanol plant in India. http://www.cleantech.com/news/3550/uk-firm-plans-biochemical-plant-india; 2008

  • Cobalt Biofuel News. Cobalt biofuels raises $25 million to commercialize next generation biofuel—biobutanol. http://www.cobaltbiofuels.com/news/news-item/series-c-round; 2008

  • Dean B.; Dodge T.; Valle F.; Chotani G. Development of biorefineries—technical and economic considerations. Biorefineries—industrial process and products. In: Kamm B.; Gruber P. R.; Kamm M. (eds) Status quo and future directions, vol 1. Wiley-VCH, Weinheim, pp 67–83; 2006.

    Google Scholar 

  • Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 31: 466–487; 2005.

    Article  CAS  Google Scholar 

  • Douglas J. M. Conceptual design of chemical processes. McGraw-Hill, New York. 1989.

  • EIA. Biodiesel performance, costs and use. http://tonto.eia.doe.gov/FTPROOT/environment/biodiesel.pdf; 2004

  • EISA. EISA of 2007 calls for additional production of biofuels. http://www.renewableenergyworld.com/rea/partner/stoel-rives-6442/news/article/2008/01/eisa-of-2007-calls-for-additional-production-of-biofuels-51063; 2007

  • FO Lichts Ethanol production costs: a worldwide survey, a special study from FO Lichts and Agra CEAS Consulting. Agra Informa, Tunbridge Wells, Kent; 2007.

    Google Scholar 

  • Gevo News. Gevo, Inc secures cellulosic technology to make advanced biofuel. http://www.gevo.com/news_Cargill-pr_022609.php; 2009.

  • Graboski M. S.; McCormick R. L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24: 125–164; 1998.

    Article  CAS  Google Scholar 

  • Hanai T.; Atsumi S.; Liao J. C. Engineered synthesis pathway for isopropanol production in Escherichia coli. App. Environ. Microbiol. 73: 7814–7818; 2007.

    Article  CAS  Google Scholar 

  • Hass M. J.; McAloon A. J.; Yee W. C.; Foglia T. A. A process model to estimate biodiesel production cost. Biores. Technol. 97: 671–678; 2006.

    Article  Google Scholar 

  • Hill J.; Nelson E.; Tilman D.; Polasky S.; Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 10330: 11206–11210; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski J. R.; McAloon A. J.; Taylor F. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind. Crops Prod. 233: 288–296; 2006.

    Article  CAS  Google Scholar 

  • Lin Y.; Blaschek N. P. Butanol production by butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Envirol. Microbiol. 45: 966–973; 1983.

    CAS  Google Scholar 

  • Marchal R.; Rebeller M.; Vandecasteele J. P. Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone butanol production. Biotechnol. Lett. 6: 523–528; 1984.

    Article  CAS  Google Scholar 

  • Merino S. T.; Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Engin Biotechnol 108: 95–120; 2007.

    CAS  Google Scholar 

  • NBB. Estimated US biodiesel production by fiscal year. http://www.biodiesel.org/pdf_files/fuelfactsheets/Production_Graph_Slide.pdf; 2009

  • Parekh M.; Formanek J.; Blaschek H. P. Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl. Microbiol. Biotechnol. 51: 152–157; 1999.

    Article  CAS  Google Scholar 

  • Parekh S. R.; Parekh R. S.; Wayman M. Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehrdolysed lignocellulosics. Enzyme Microb. Technol. 10: 660–668; 1988.

    Article  CAS  Google Scholar 

  • Peters M. S.; Timmerhaus K. D. Plant design and economics for chemical engineers. 4th ed. McGraw-Hill, New York; 1991.

    Google Scholar 

  • Phillips, S.; Aden, A.; Jechura, J.; Dayton, D. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory Golden CO. NREL report no TP-510-41168. http://www.nrel.gov/docs/fy07osti/41168.pdf; 2007.

  • Qureshi N.; Blaschek N. P. Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA 101. Food Bioprod. Process. 78: 152–167; 2000.

    Article  Google Scholar 

  • Qureshi N.; Lolas A.; Blaschek H. P. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA 101. J. Ind. Microbiol. Biotechnol. 26: 290–295; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N.; Saha B. C.; Cotta M. A. Butanol production from wheat straw hydrolyzate using Clostridium beijerinckii. Bioprocess Biosys. Eng. 30: 419–427; 2007.

    Article  CAS  Google Scholar 

  • Qureshi N.; Thaddeus C. E. Butanol, a superior biofuel production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioproducts Biorefining 2: 319–330; 2008.

    Article  CAS  Google Scholar 

  • Qureshi N.; Thaddeus C. E.; Ebener J.; Dien B. S.; Cotta M. A.; Blaschek H. P. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 99: 5915–5922; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ramey, D.; Yang, S. H. Production of butyric acid and butanol from biomass final report. Work performed under contract no: DE-F-G02-00ER86106 USDOE Morgantown WV; 2004.

  • Ramirez. E.; Johnston D.; Mcaloon A. J.; Singh V. Enzymatic corn wet milling: engineering process and cost model. Biotechnol. Biofuels 2: 2; 2009.

    Article  PubMed  Google Scholar 

  • RFA. Changing the climate, ethanol industry outlook. RFA, Washington, DC; 2008.

    Google Scholar 

  • Rodrigues, A. P. Participação dos fornecedores de cana na cadeia do açúcar e álcool. Congresso Internacional de Tecnologias na Cadeia Produtiva, Concana Uberaba, MG, março de; 2007.

  • Seabra, J. E. A. Technical-economic evaluation of options for whole use of sugar cane biomass in Brazil. Campinas Faculdade de Engenharia Mecânica Universidade Estadual de Campinas 274p PhD thesis (In portuguese); 2007.

  • Shapouri, H.; Salassi, M.; Fairbanks, N. The economics feasibility of ethanol production from sugar in the United States. USDA report; 2006

  • Soni B. K.; Das K.; Ghose T. K. Bioconversin of agrowastes inot acetone butanol. Biotechnol. Lett. 4: 19–22; 1982.

    Article  CAS  Google Scholar 

  • Spake, A. DuPont develops world’s first advanced biofuel, biobutanol will be a high-energy petroleum alternative. http://www.america.gov/st/washfile-english/2007/September/20070919163628ndyblehs0.6094019.html; 2007

  • TetraVitae Bioscience. http://www.tetravitae.com; 2009

  • USDA. USDA’s 2002 ethanol cost-of-production survey. Agricultural Economic Report Number 841; 2002

  • USDA. USDA soybean projections, 2008–17. http://www.ers.usda.gov/briefing/soybeansoilcrops/2008baseline.htm#ussoybean; 2008

  • Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks. http://www.nrel.gov/docs/fy05osti/37092.pdf; 2005

  • Wooley, R.; Putsche, V. Development of an ASPEN PLUS physical property database for biofuels components. National Renewable Energy Laboratory, Golden CO. NREL report no. MP-425-20685; 1996.

  • Wooley, R.; Ruth M.; Glassner D.; Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol. Prog. 155: 794–803; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y.; Dube M. A.; McLean D. D.; Kates M. Biodiesel production from waste cooking oil: 2. economic assessment and sensitivity analysis. Bioresour. Technol. 90: 229–240; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

NREL would like to thank the US Department of Energy (DOE) Office of the Biomass Program (OBP) for its continued leadership, support, and collaboration in the biofuels arena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Aden.

Additional information

Editor: Dwight Tomes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, L., Aden, A. The economics of current and future biofuels. In Vitro Cell.Dev.Biol.-Plant 45, 199–217 (2009). https://doi.org/10.1007/s11627-009-9216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9216-8

Keywords

Navigation